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ABSTRACT

Mute Swans (Cygnus olor) have the potential to contribute to a reduction in Submerged Aquatic Vegetation (SAV)
in the Chesapeake Bay, USA, owing to their high preference for SAV as a food resource, high population, year-
round inhabitation of the bay, and great appetite. However, quantitative data on SAV decline due to Mute Swan
herbivory along with other potential factors have not been hitherto generated for the entire bay. Based on biology
and current knowledge of SAV and Mute Swans in the bay, we developed a suite of 15 a priori candidate models
that could potentially predict SAV cover decline in the bay. Each model had Mute Swan population and/or one or
more other potential environmental factors as independent variables (predictors) and SAV-percent-cover decline as
the dependent variable. We generated data by measuring SAV percent cover reduction, water depth, extent of light
penetration, salinity, and number of Mute Swan at 18 sites. Using these localized data, we further ranked all the
candidate models through Akaike’s Information Criterion (AICc) model selection. Based on the smallest value of
AlCc, we selected the predictive model including four predictors (water depth, extent of light penetration, salinity,
and number of Mute Swans) as the most parsimonious model. It is clear that Mute Swans contribute to SAV
decline, but it is not the most important factor.

INTRODUCTION and Harvey 2004).

Mute Swans (Cygnus olor) are native to Eurasia and Although Mute Swans are believed to contribute to

were introduced into North America in the late 1800s
and early 1900s (Bellrose 1980, Ciaranca et al.
1997). Since the mid-to-late portion of the 20th
century, Mute Swan populations have been rapidly
expanding particularly along the Atlantic coast (Scott
2004). The portion of the Chesapeake Bay located in
Maryland has greatly contributed to the expansion as
the population increased at an annual rate of 23%
between 1986-92 and 10% between 1993-99
resulting in the population as high as 4,000
individuals (Hindman and Harvey 2004). The
phenomenal population growth of Mute Swans is

harmful to Submerged Aquatic Vegetation (SAV) in ,

the bay as it is the mainstay of their diet (Bellrose
1980). There is anecdotal information to conclude
that Mute Swans impact SAV in the bay (Hindman
and Harvey 2004, Perry et al. 2004). SAV in the Bay
has been playing a vital role in providing habitat and
food to numerous native organisms and performing
several other ecological functions (Maryland
Department of Natural Resources (DNR) 2001). It is
a stressed resource since the 1960s due to several
man-induced and natural factors (Hurley 1990,
Naylor 2004). The increased population of Mute
Swans has put additional pressure on SAV (Hindman
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the SAV decline and hamper SAV restoration
activities in the Chesapeake Bay, quantitative data on
reduction of SAV by Mute Swans is limited
(Hindman and Harvey 2004).

Numerous other factors affect SAV growth in the bay
including weather events (e.g., storm), natural
population cycles, animal grazing and foraging,
industrial pollutants, agricultural herbicides and
general decline in water quality due to increased
loadings of nutrients sediment from the surrounding
watersheds (Hurley 1990). However, the relative
importance of Mute Swan herbivory compared to
abiotic factors is unknown. Therefore, we carried out
this study with the primary objective to develop the
best approximating parsimonious predictive model
for SAV cover decline in the Bay using an
information-theoretic approach.

STUDY AREA

We collected localized data on the eastern shore of
Chesapeake Bay, Maryland (Figure 1). The bay is
formed by over 150 rivers and streams and tidal
waters of the Atlantic Ocean and is one of the



primary waterfow]l wintering areas in the Atlantic
Flyway (Hindman and Stotts 1989, Meyers et al.
1995). The Chesapeake Bay traditionally has played
a vital role in providing habitat to wintering native
waterfowl, but now has been inhabited by thousands
of resident exotic Mute Swans since the 1990s.

Chesapeake Bay is a 8-48-km-wide and 288-km-long
shallow estuary, that lies in a north-south direction,
roughly parallel to the Atlantic seacoast. The study
area covered 18 sites in the mid-bay (8 in Talbot
County and 10 in Dorchester County). The sites
were located between 38° 25' 00" N and 38° 52' 30"
N latitudes and 76° 07' 30" W and 76° 22' 30" W
longitudes. SAV species in our study area were
widgeon grass (Ruppia maritime), horned pondweed
(Zannichellia  palustris),  slender  pondweed
(Potamogeton pusillus), and sago pondweed (P.
pectinatus). Widgeon grass, which has tolerance to
wide range of salinities, was wide-spread and most
dominant (Tatu 2006). The population of Mute
Swans was highest (total 3,286 individuals) along the
eastern shore of the Chesapeake Bay (Hindman and
Harvey 2004).  Specifically, Dorchester (1,638
swans) and Talbot (1,023 swans) Counties in the
mid-bay area supported the largest number of Mute
Swans (Maryland DNR 2002, Hindman and Harvey
2004). Portions of these two counties were selected
as our study sites.

METHODS
Data Collection

We established 18 study sites with SAV beds and
Mute Swans (pairs/flocks) in Talbot and Dorchester
Counties, Maryland, in 2003 and 2004. To assess
the SAV cover decline under the influence of Mute
Swan foraging at each site, we established multiple
sets of treatment (exclosures) and control (open) plots
in the SAV beds at each site before the on-set of the
SAV growing season. Each site had three sets of 5x5
m control and treatment sampling plots.  All
sampling plots in a set were established in an SAV
bed with uniform density level. Using a Daubenmire
frame, we measured percent cover of SAV in all the
sampling plots at each of the 18 sites at the end of the
second consecutive season of SAV growth after the
establishment of the sampling plots (Tatu 2006).
Based on these measurements, we determined the
difference in percent cover of SAV between 54 2-
year-treatment and 54 2-year-control plots for each of
the 18 sites. The percentage difference represented
SAV cover decline for each site. Detailed

information on exclosures and study design can be
found in Tatu (2006).

We also measured environmental factors for each
site. They included water depth (WD), extent of light
penetration (LP), and salinity (S§). Water depth was
measured to the nearest 1 cm on a permanently
marked pole, extent of light penetration (i.e., the ratio
of Secchi depth to water depth) was measured using a
Secchi disk, and salinity was measured using a YSI
salinity meter. Moreover, we also estimated average
Mute Swan population (SP) for each site by counting
the swans fortnightly.

Model development

We considered a basic a priori model in which the
predictors (covariates) for SAV cover decline (Y)
were selected based on our current knowledge
regarding SAV and Mute Swans in the bay. Its
structure can simply be expressed as:

(WD) = (LP) =S = SP.

We further translated it into statistical model in the
form of linear regression model as given below:

Y = Bo - Py (WD)
- B2 (LP) + B3(S) + B4 (SP), where

Y = SAV cover decline at a site in the bay, By =
intercept, f; (WD) = slope on water depth, B, (LP) =
slope on extent of light penetration, B3(S) = slope on
salinity, and B, (SP) = slope on average population of
Mute Swans.

In developing the model we hypothesized that SAV-
percent-cover decline (Y) had a negative linear
relationship with water depth (WD) and extent of
light penetration (LP), but had positive linear
relationship with salinity (S) and average Mute Swan
population (SP). Based on the basic model, we
further developed 14 other a priori candidate models
by considering biologically meaningful associations
of the covariates (i.e., WD, LP, S, and SP) used in the
basic model.  As a result, we had a suite of 15 a
priori candidate models, each having an unique
structure (Table 1). In our a priori models, we did
not include any interactions of covariates as there is
typically only one model without interactions, but an
infinite number of models with interactions because
the interaction can be characterized by any function
of the covariates (Mangel er al. 2001). We used an
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information theoretic approach to select the relatively
best predictive model among the general linear
models for SAV-cover-decline (Burnham and
Anderson 1998). This method allows model
uncertainty to be included in model evaluation and
the derivation of parameter estimates (Hepp er al.
2005). The best approximating and competing
models were identified using Akaike's Information
Criterion corrected for small sample size (AIC,) in
Proc Mixed (SAS 2001), which determines AIC
values based on likelihood. Model comparisons were
made with AAIC,, which is the difference between
the AIC. for each individual model and the lowest
observed AIC, value (Burnham and Anderson 1998).
Models with AAIC.= 2 have substantial support
from the data (Burnham and Anderson 1998). To
evaluate support for model parameters, we summed
AIC. model weights across all models (parameter
likelihood; Burnham and Anderson 1998). The AIC,
weight of a model signifies the relative likelihood
that the specific model is the best of the suite of all
models (Hepp er al. 2005). It was premised that the
parameters with good support will have high summed
AIC, model weight values (near 1) due to that
parameter's inclusion in most of the better models
(Hepp et al. 2005).

RESULTS

Table 2 presents the data from the 18 sites that we
used to evaluate the predictive models. Of the 15
candidate models, 8 models included swan
population as one of its covariate either singly or in
combination with one or more covariates. The
remaining seven models did not involve the SP
covariate, but we still retained them as we expected
that the comparison of AIC values for such models
with those involving SP might reveal the significance
of swan population as a predictor for SAV decline.
The best model (selected using the minimum AICc
value = 127.5) contained the combined effects of
water depth (WD), extent of light penetration (LP)
(i.e., light penetration depth relative to total depth),
salinity (S), and average Mute Swan population (SP)
to predict SAV-percent-cover decline (Y) (Table 1).
Thus, the most plausible model (which also was our
basic model) is:

Y =55.2929 -
10.7255WD- 38.3855LP + 8.17525+ 0.6477SP
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DISCUSSION

In the selected parsimonious model, SAV-percent-
cover decline (Y) had a negative linear relationship
with water depth (WD) and extent of light
penetration (LP), but had a positive linear
relationship with salinity (S) and average Mute Swan
population (SP). The model indicates that SAV
decline would increase with increasing salinity (S) or
average swan population (SP) at a site, and it would
also increase with a decrease in depth of water (WD)
or decrease in extent of light penetration (LP) at a
site. An increase in SAV decline with decreasing
water depth was predicted due to the possibility of
greater destruction of SAV in shallower water
because of its greater exposure to Mute Swan
herbivory and other environmental factors (e.g.,
storms, strong wave action). An increase in SAV
decline with increasing salinity was predicted
considering that with the exception of eelgrass
(Zostera marina), no SAV species in the bay is a true
sea grass and so increasing salinity would be an
adverse environmental condition for most SAV
species in the bay (Hurley 1990, Short et al. 2001).
Likewise, we predicted that SAV decline would
increase with a decrease in extent of light penetration
because less light penetration would decrease
primary productivity of SAV.

There are no other competing models (as AAICc >
2.0 (Burnham and Anderson 1998). The Akaike
weights (Table 1) indicate that the best model
selected based on minimum AICc values is very
likely as well, with no other models coming close in
terms of their relative likelihood. The Akaike
weights for all the models in the candidate set sum to
1(Franklin et al. 2001). Therefore, the best model has
a substantial proportion (84.3%) of the weight
associated with all the models. In terms of strength
of evidence, the best model is 8 times (0.843/0.108)
more likely than the second-ranked model which did
not involve the covariate of swan population.
Moreover, the selected parsimonious model was 34
times more likely than the third-ranked model, which
involved the covariate of swan population but not
salinity. There was no support for the models
involving only number (population) of Mute Swans
as predictor variable or its association with water
depth, salinity, or extent of light penetration.

We initially considered inclusion of nutrients (i.e.,
nitrogen and phosphorus) as one of the potential
predictor variables in the basic a priori model, but
after careful consideration about the nutrient-rich



status of the bay, we did not include it. We
considered that the increasing load of nutrients in
water is ultimately linked with light penetration, the
variable which we had already included in our basic a
priori model. This is because excess amounts of
nutrients like phosphorus and nitrogen cause rapid
growth of phytoplankton, creating dense populations
or blooms reducing the amount of sunlight available
to SAV (Chesapeake Bay Program 2005).
Measurement of extent of light penetration at 18
study sites (localities) on the eastern shore of the bay
revealed that there was considerable variation in
extent of light penetration from site to site. Thus, at
seven sites extent of light penetration was as high as
100%, at two sites it was less than 50%, at another
five sites its extent was 50% to 75%, and the
remaining four sites had over 75% to less than 100%
light penetration. Thus, considering variation in
extent of light penetration from site to site, the
relevant predictor variable (LP) might have high site-
specific (i.e., locality wise) relative importance with
respect to growth and survival of SAV in the bay. In
Chesapeake Bay, the most important factor
determining growth and survival of SAV is light
(Chesapeake Bay Program 2005). In the best model
selected by us, highest relative importance of the
relevant predictor variable (i.e., extent of light
penetration) can be judged from its highest weight
(Table 1).

The other two predictor variables (water depth and
salinity) also are important in determining growth
and survival of SAV in the bay. This is because SAV
is mainly restricted to water less than 2 m deep and
different species of SAV have different salinity
requirements (Hurley 1990, Chesapeake Bay
Program 2004). Therefore, the most parsimonious
model selected by us has appropriately included these
two predictor variables. However, for the middle
portion of the Bay (Talbot and Dorchester Counties),
where the maximum population of Mute Swans in the
bay was concentrated (Hindman and Harvey 2004),
the locality-wise relative importance of these two
factors might be lower as compared to that of extent
of light penetration. Overall uniformity of water
depth and salinity in mid-bay was the potential cause
for the lower relative importance of the relevant
predictor variables (i.e., WD and S). Thus,
measurement of environmental factors at 18 study
sites in the mid-bay portion revealed that water depth
and salinity were more or less uniform among
individual sites. At seven (39%) sites, water depth
was (.50 to 0.75 m, at another seven (39%)sites, the
depth was over 0.75 m but less than | m and only
four (22%) sites had 1 m (or slightly more) depth. At
15 (83%) sites, salinity was around 9-10 ppt, and the

remaining 3 (17%) sites had salinity over 10 ppt. In
our view, the relative importance of the salinity
variable also would be low because 30 of the 34 SAV
beds (88%) consisted of R. maritima only (Tatu
2006). The SAV beds consisting of only R. maritima
covered about 97% of the total SAV bed area at our
study sites (Tatu, in press) indicating its
predominance in our study area. Because R. maritim,
is a eury-haline species (Hurley 1990), salinity would
not have a substantial impact on its growth and
survival.

The relative importance of the predictor variable of
the Mute Swan population (SP) might be lower than
that of other predictor variables because Mute Swans
are not the primary cause for SAV decline in the bay,
but an additional factor (Maryland DNR 2001).
Accordingly, the weight of this predictor variable
was lower than that of other predictor variables in the
best selected model (Table 1). Mute Swans likely
cause a synergistic effect with abiotic variables,
resulting in increased SAV decline in the Bay. Mute
Swan control should be used along with other
practices to combat SAV decline in the Chesapeake
Bay.
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Figure 1. Portions of Talbot and Dorchester Counties, Maryland (marked)
on the eastern shore of Chesapeake Bay where 18 sites for data
collection were located, 2003-04.
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