Global within-site variance in soil solution nitrogen and hydraulic 

#### conductivity are correlated with clay content.

- Michael J. Castellano\* and Jason P. Kaye
- 116 Agricultural Sciences and Industries Building
- Department of Crop and Soil Sciences

- The Pennsylvania State University University Park, PA 16802 \* mjc471@psu.edu Tel: 203-556-5965 Author Contributions: MJC conceived the study and collected the data. MJC and JPK analyzed , and co. From the second seco
- the data and wrote the paper.

Page 2 of 33

# 24 Abstract

25 Nutrient fluxes in terrestrial ecosystems are governed by complex biological and physical 26 interactions. Ecologists' mechanistic understanding of these interactions has focused on 27 biological controls including plant uptake and microbial processing. However, ecologists and 28 hydrologists have recently demonstrated that physical controls are also important. Here, we 29 show that within-site spatial variation in soil solution N concentrations is a function of soil clay 30 content across a globally diverse array of field sites. Clay content explained 35% and 53% of the 31 coefficient of variation (CV) in soil solution nitrate  $(NO_3)$  and dissolved organic nitrogen 32 (DON), respectively. The CV of soil hydraulic conductivity is a similar function of clay content, 33 suggesting that soil hydrology may be a significant mechanism affecting variation in soil solution N. Although vegetation physiognomy and soil C/N ratios are known to affect soil 34 solution N concentrations, neither were significantly related to within-site spatial variation in 35  $NO_3$  or DON. However, the spatial variation of  $NO_3$  and DON was greater in younger forests 36 37 than in paired older forests. Our data show that the heterogeneity of an important resource, soil 38 solution N, is a predictable function of clay content. Resource heterogeneity, such as that described here for soil solution N, can affect population, community and ecosystem processes. 39 40 41 *Keywords: leaching, lysimeter, soil hydrology, resource heterogeneity, soil texture* 42 43 44

46

## 47 Introduction

48 Studies of ecosystem nutrient cycling and retention have traditionally focused on plant and 49 microbial processes (Vitousek and others 1982; Magill and others 1997; Bohlen and others 50 2001). However, several recent reviews and empirical studies demonstrate that ecosystem losses 51 of nitrate (NO<sub>3</sub><sup>-</sup>), dissolved organic nitrogen (DON), and dissolved organic carbon are controlled 52 by complex interactions between biological mechanisms (plant and microbial activity) and 53 physical mechanisms mediated by soil hydrology (e.g. Neff and Asner 2001; Qualls 2000; Lohse and Matson 2005; Asano and others 2006; De Schrijver and others 2007; Dittman and others 54 55 2007). At the global scale, the relative importance of biological and physical controls on nutrient cycling has not been evaluated across ecosystems. Moreover, with the exception of 56 several well known examples, the identification of global patterns in terrestrial biogeochemistry 57 is hindered by high chemical and physical variation within soils (e.g., Schimel and others 1994; 58 59 Raich and Potter 1995; Jobbagy and Jackson 2000). Variation itself is an important yet often overlooked ecosystem property (Kratz and 60

others 2003). Analyses of ecological variability have provided significant insight into 61 population, community, and ecosystem ecology. For example, studies have shown that cross-62 63 scale intraspecific variation in population abundance is predictable (Brown and others 1995), 64 biodiversity can promote community stability (Tilman 1999), and interannual variation in 65 above ground net primary production is a function of both precipitation variability and potential 66 growth rates (Knapp and Smith 2001). Across ecosystems, variation in properties such as 67 nutrient cycling and productivity is often related to physical attributes including climate and soil 68 (Prentice and others1992; Schimel and others1994; Knapp and Smith 2001).

| 69 | Nutrient loss through the soil is one important ecosystem property that is affected by                |
|----|-------------------------------------------------------------------------------------------------------|
| 70 | interactions between soil hydrology and biogeochemistry (Fisher and others 2004). To measure          |
| 71 | this property, ecologists routinely sample soil solution nitrogen (N). These data are used to         |
| 72 | develop ecosystem nutrient budgets and determine potential nutrient pollution of ground and           |
| 73 | surface waters (Chapin and others 2002). Several reviews have synthesized these measurements,         |
| 74 | focusing on regional patterns of solute concentration, flux and their controls (Kalbitz and others    |
| 75 | 2000; Qualls 2000; De Schrijver and others 2007). However, to our knowledge, global cross-            |
| 76 | ecosystem patterns of variability have not been examined.                                             |
| 77 | Here, we test biologically-based and physically-based hypotheses to explain within-site               |
| 78 | variability of an important ecosystem resource, soil solution N Two important biologically-           |
| 79 | based controls on ecosystem N leaching are vegetation physiognomy and soil C/N ratio.                 |
| 80 | Vegetation physiognomy can affect soil solution N through differences in throughfall and litter       |
| 81 | quality (e.g, Manderscheid and Matzner 1995; Michalzik and others 2001; De Schrijver and              |
| 82 | others 2007). Soil C/N ratio is negatively correlated with ecosystem nitrate export (Emmett and       |
| 83 | others 1998; Lovett and others 2002). Due to the correlations between these variables and soil        |
| 84 | solution N concentrations, we explored the potential for vegetation physiognomy and C/N ratios        |
| 85 | to account for within-site variation in soil solution N through the following two hypotheses          |
| 86 | 1a) Within-site spatial variation of soil solution N is a function of vegetation physiognomy.         |
| 87 | 1b) Within-site spatial variation of soil solution N peaks at intermediate soil C/N ratios and is     |
| 88 | lower in soils with narrow (N availability is consistently high with little variation) or wide (rapid |
| 89 | immobilization keeps N low with little variation) C/N ratios.                                         |
| 90 | Alternatively, soil hydrologists have demonstrated that physical structure of soil can                |

91 affect water and solute transport including dissolved N (e.g., Vervoort and others 1999; Jarvis

92 2007). Recently, Jarvis (2007) developed a conceptual model that describes soil hydrology and 93 solute transport as a function of soil structure. Soil structure refers to the development of soil 94 aggregates; well structured soils have many aggregates whereas poorly structured soils have few 95 aggregates. The model builds upon the general relationship between soil structure and clay 96 content— soils with moderate clay content are well-structured whereas soils with low clay or 97 high clay contents are poorly structured. Accordingly, the model predicts that, as a result of poor 98 structure, soils with low and high clay contents are dominated by homogenous soil hydrology characterized by equilibrium and matrix flow. In contrast, the model predicts that soils with a 99 100 quantitatively undefined moderate clay content, and thus good structure, are dominated by heterogeneous soil hydrology characterized by non-equilibrium and preferential (bypass) flow. 101 Thus, we hypothesize: 2a) Within-site spatial variation of soil solution N is a function of clay 102 103 content peaking at moderate clay contents, but not a function of sand or silt content. Because we posit hydrology is a mechanism affecting variation in soil solution N, we further hypothesize: 104 105 2b) within-site spatial variation of soil hydrology (as indexed by saturated hydraulic 106 conductivity) is a similar function of clay content. tellan

#### Methods 107

108 Data Retrieval

109 To test hypotheses 1 and 2a, we searched the peer-reviewed published literature for papers that 110 report mineral soil solution nitrate ( $NO_3$ ) and dissolved organic N (DON) sampled by tension 111 lysimeters, zero tension lysimeters, or centrifuge methods. We selected these two 112 biogeochemicals because they differ in biological availability;  $NO_3^{-1}$  is cycled rapidly and widely 113 used by plants and microbes whereas DON is cycled more slowly and is less biologically 114 available (Neff and others 2003). Because hypothesis 2 addresses the relationship between soil

115 solution and soil structure, we did not include data from lysimeters that sampled surface organic 116 soil horizons that overlay mineral soils. However, we did include data from lysimeters that 117 sampled completely organic soils (i.e. peat soils). We also limited our search to non-agricultural 118 systems because agriculture disturbs soil structure and alters N cycling. Similarly, when 119 experiments compared manipulation treatments to untreated controls, we only used data from the 120 controls. When available, we recorded the time since major disturbance such as forest harvest 121 and fire (Appendix). Two papers reported total dissolved inorganic N ( $NH_4^+ + NO_3^-$ ); we included these data with reports of NO<sub>3</sub><sup>-</sup> (Lajtha and others 1995; Dijkstra and others 2007). The 122 123 exclusion of these data did not significantly change our results. To test hypothesis 2b, we conducted a similar search of the peer-reviewed literature for 124

papers that report saturated hydraulic conductivity ( $K_s$ ) of surface soils. We selected  $K_s$  because this is the most frequently reported soil hydrology variable and the standard for measuring water conductivity due to difficulty in estimating unsaturated conductivity. We executed this search with the same inclusion rules applied to our search for soil solution N data.

129 Determination of Variation

Several methods are available to measure variation in ecological data (Fraterrigo and Rusak 130 131 2008). We used the coefficient of variation (CV) of the mean (CV = 100\*1 standard 132 deviation/mean) to standardize and compare within-site spatial variation across studies. The CV 133 has a long history of use in studies of ecosystem variability (e.g., Whittaker and others 1979, 134 Knapp and Smith 2001). Because the CV standardizes for the mean and is a dimensionless 135 number, it permits comparison of variation across ratio scale data with different units and means 136 (Fraterrigo and Rusak 2008). Although the CV can be sensitive to low mean values, we found 137 no correlation between mean soil solution concentrations of  $NO_3^-$  and DON or rates of  $K_s$  and

their respective CVs. Calculation of the CV requires the following information: the mean and standard deviation (SD) *or* the mean, standard error (SE) and sample size. We collected these data from tables and figures. We could not include many reports of soil solution N in our analysis because they did not contain these data, or the data were presented in figures that were too small to interpret (e.g., Carnol and others 1997).

143 Spatial variability in ecosystem properties can be scale dependent (Collins and Smith 144 2006) and the papers in our analyses sampled a wide range of spatial scales. Replicate plot sizes 145 ranged from 1-5000m<sup>2</sup>; total treatment areas ranged from 6-75,000m<sup>2</sup> (Appendix). However, it 146 was rarely possible to determine the distance between lysimeters within plots or treatments. In a 147 majority of reports, lysimeters were randomly located within plots. Thus, we made no 148 evaluation of spatial scale on soil solution N CVs.

We required spatial means and errors. Thus, we carefully considered how means and errors were derived in each paper. For example, we could not use data that calculated a mean and error by first averaging replicates within each sample time and then averaging across sample times (e.g., a monthly mean). However, we could use data that were derived from multiple sample times but first averaged across-time within a replicate and then multiple replicates' crosstime means were averaged (i.e., a spatial mean).

155 Several papers reported the spatial mean and error (SE or SD) for multiple time points 156 (e.g, months, seasons, years). In these cases we used the mean CV of the time points in our 157 analysis by calculating the average CV across time. In two of these papers, the standard error 158 was greater than the mean for a particular point in time. We eliminated these time points from 159 calculation of the CV because they do not significantly differ from zero and it was not clear from 160 the methods whether near-zero means resulted from values near detection limits or from missing

- 161 data assigned a zero concentration value (no water collected in the lysimeter; Johnson and others
- 162 2001; Brenner and others 2006). This interpretation rule also resulted in the total elimination of
- 163  $NO_3^{-1}$  data from a third paper where the standard error was greater than the mean on all sample
- 164 dates and the CV was >200% (Asano and others 2006).
- 165 If a paper reported the mean and an error for replicate locations (e.g., mean and errors of
- 166 subsamples within a replicate), we used the treatment CV (and not multiple CVs for each
- 167 replicate). Several papers provided mean soil solution N and error for multiple mineral soil
- depths within a location; in these cases, we determined the CV for each depth and then used the 168
- 169
- 170
- cross-depth mean CV in our analysis. *Determination of Soil Texture* In addition to the CV of soil solution NO<sub>3</sub><sup>-</sup>, DON and K<sub>s</sub>, we also required percent clay (by mass) 171
- 172 of the soil. We obtained percent clay data in one of five ways (ordered in preference): 1.
- reported in the paper, 2. reported in a previously published paper from the same location, 3. 173
- contacted the author, 4. published on the USDA NRCS Web Soil Survey (NRCS 2008; 174
- http://websoilsurvey.nrcs.usda.gov/app/), 5. taken as the mean of the reported soil texture class. 175
- 176 The fifth clay determination method was clearly the least accurate. However, we only used this
- method for 11% of our data. When we were forced to use this method, we determined soil 177
- texture as follows; if soil texture was reported to be "clay loam" we used 33.75% clay because 178
- 179 that is the mean clay content for the clay loam soil texture class which has a range from 27.5-
- 180 40% clay (NRCS 2008). Soil clay content typically varies with depth; accordingly, we used the
- 181 depth-weighted mean soil texture to lysimeter depth when possible.
- 182 Data Analysis

183 To evaluate hypothesis 1a ("within-site spatial variation of soil solution N is a function of 184 vegetation physiognomy"), we sorted each report of soil solution  $NO_3^-$  and DON into one of 185 seven vegetation physiognomy groups (Conifer; Hardwood-Deciduous; Hardwood-Evergreen; 186 Grassland; Savanna-Shrubland; Mixed Conifer-Deciduous and Heath). Then, using two 187 individual one-way analyses of variance (ANOVA), we independently analyzed the dependent 188 variables  $NO_3^-CV$  and DON CV across the between subject factor vegetation physiognomy. We 189 selected the seven physiognomy groups because two have been used to evaluate the effect of 190 vegetation physiognomy on soil solution N concentrations (i.e., Hardwood-Deciduous and 191 Conifer; e.g., Currie and others 1996; De Schrijver and others 2007); the other four groups separated the remaining data between well accepted global biomes (Prentice and others 1992). 192 Although Savanna-Shrubland and Heath are both dominated by a shrub physiognomy, the 193 Savanna Shrubland sites were dominated by nonericaceous species whereas the Heath sites were 194 195 dominated by ericoids.

To evaluate hypothesis 1b ("within-site spatial variation in soil solution N peaks at 196 197 intermediate soil C/N ratios") and 2a ("within-site spatial variation in soil solution N is a 198 function of clay content"), we again independently analyzed  $NO_3^-$  and DON data. Using 199 Sigmaplot<sup>®</sup>, we fit the percent clay (x) and CV (y) data to several Gaussian and lognormal 200 functions exhibiting a single maximum. We did not formally select among curve-fitting options 201 because our interest was in determining whether non-linear relationships existed, rather than 202 defining a specific non-linear curve. However, we did examine the residuals of these curves to 203 determine the modeled data's fit throughout the data range. We also examined the relationships 204 between NO<sub>3</sub><sup>-</sup> and DON CVs and sand and silt content although these data were not available for 205 seven reports. To evaluate hypothesis 2b, ("within-site spatial variation of soil saturated

hydraulic conductivity is a function of clay content"), we fit  $K_s$  CVs and percent clay, sand and silt to the same functions we used for NO<sub>3</sub><sup>-</sup> and DON.

208 We used a subset of reports to 1) evaluate the relative magnitude of  $NO_3^-$  and DON CVs 209 for cases when lysimeter water was analyzed for both N species, 2) compare the relative 210 magnitude of  $NO_3^-$  or DON CVs between young or recently harvested forests and paired older 211 forests and 3) compare the relative magnitude of  $NO_3^-$  or DON CVs between unmanipulated 212 controls and paired N addition treatments (Appendix). Twenty-five reports analyzed lysimeter water for both NO<sub>3</sub><sup>-</sup> and DON. Nine reports compared NO<sub>3</sub><sup>-</sup> and four reports compared DON 213 214 between young or recently harvested forests and older forests on the same soils. Four reports compared NO<sub>3</sub><sup>-</sup> and four reports compared DON between unmanipulated controls and paired 215 mineral N addition treatments on the same soils. We used paired t-tests to make all of these 216 217 comparisons. We also used a majority of reports to search for a general effect of time since major disturbance across all reports (i.e., forest harvest, fire or cessation of cropping; Appendix). 218 219 The distributions of data did not significantly differ from the normal distribution and variance was not significantly different between groups (t-tests and ANOVA). Sample sizes in 220 221 analyses of variance for vegetation physiognomy were not equal. However, equal sample sizes are not required for single-factor ANOVA although they do diminish statistical power (Zar 222 223 1997).

224 **Results** 

We found 37 papers that met our requirements for soil solution N data. These papers included a total of 100 independent reports of NO<sub>3</sub><sup>-</sup> (62) and DON (38) representing different soils and vegetation physiognomies. Geographically, our data set includes representatives from Africa, Asia, Europe, North America, and South America. Ecologically, these data are distributed across

229 forest, grassland and wetland biomes from the tropics to the sub-arctic. However, there was no 230 effect of vegetation physiognomy or soil C/N ratios on NO<sub>3</sub><sup>-</sup> or DON CVs (data not shown). 231 Although not included in our hypotheses, we also found no effect of time since disturbance, or 232 total C or total N on soil solution N CVs. 233 We found 14 papers that met our requirements for  $K_s$  data. These papers included a total 234 of 46 independent reports. Similar to reports of soil solution N, these data were widely 235 distributed both geographically and ecologically (Appendix). The relationship between clay content and the CVs of soil solution  $NO_3^-$ , DON and  $K_s$ 236 significantly fit both Gaussian and lognormal distributions (Fig. 1). However, no variable's 237 distribution significantly differed from the normal distribution (p > 0.2); thus we display the data 238 as fit by a 4-parameter Gaussian function. Percent clay of the soil accounted for greater than 1/3 239 of the variation in the CV of mean soil solution NO3 and Ks. Peak variation of NO3 and DON 240 occurred at  $\approx 12\%$  clay content; peak variation in K<sub>s</sub> occurred at a slightly higher clay content— 241  $\approx 15\%$ . Clay accounted for more variation within NO<sub>3</sub>, DON and K<sub>s</sub> CVs than either sand or silt 242 243 (Table 1). Considering all data, the magnitude of NO<sub>3</sub><sup>-</sup> variation was  $\approx 26\%$  greater than DON. The 244 arithmetic mean CV of NO<sub>3</sub><sup>-</sup> and DON were 49.84 % and 39.57%, respectively. Limiting the 245

comparison to  $NO_3^{\circ}$  and DON CVs from the same samples within reports,  $NO_3^{\circ}$  CVs were higher. However, the difference in magnitude between  $NO_3^{\circ}$  and DON CVs was also a function of clay content. At low clay content,  $NO_3^{\circ}$  CVs were typically greater than DON CVs, whereas at higher clay contents  $NO_3^{\circ}$  and DON CVs were more similar (Fig 2). Although there was no effect of time since major disturbance across all sites (Appendix), in paired plots both  $NO_3^{\circ}$  and DON variation were lower in older forests compared to young or recently harvested forests (Fig

ress

3). We found no effect of mineral N additions on  $NO_3^-$  or DON CVs (p > 0.2; data not shown).

253 However, the sample size (n = 4) for mineral N addition comparisons was extremely limited.

Although our hypotheses did not address mean concentrations of  $NO_3^-$  and DON, and our data set was not assembled to identify patterns in mean concentrations of soil solution N across sites, we found no correlation between clay content and mean concentrations of soil solution  $NO_3^-$  and DON. Similarly, there was no effect of vegetation physiognomy on mean

258 concentrations.

259 **Discussion** 

260 For the dataset assembled here, we reject our hypotheses that the coefficient of variation in soil solution N is related to vegetation physiognomy or soil C/N ratios. In contrast, we found 261 significant correlations between clay content and within-site variation of  $NO_3^-$ , DON, and  $K_s$ . 262 Thus we cannot reject our second hypothesis; clay content, through its impact on hydrology, 263 appears to be an important determinant of within-site variation in soil solution N concentrations. 264 Soil solution N CVs are well-fit by several functions exhibiting a single maximum, suggesting 265 that concentrations are more spatially variable at intermediate clay contents ( $\approx 10-15\%$ ). Our 266 267 DON data represent a limited sample size and should be interpreted with caution.

Although we cannot rule out additional mechanisms beyond vegetation physiognomy, soil C/N ratio, total C and total N, the coincident peaks and similar functional relationships between clay and the CVs of  $K_s$ , NO<sub>3</sub><sup>-</sup> and DON suggest that the mechanistic basis for the clay-NO<sub>3</sub><sup>-</sup> CV and clay-DON CV relationships is hydrological. Hydrological controls on variation in soil solution N may ultimately be the result of physical and biological interactions. For example, soil structure may influence the variation in mass flux of water and its transport of soil solution N. In contrast, hydrology may impact the diversity and heterogeneity of the microbial communities that form NO<sub>3</sub><sup>-</sup> and DON. Similarly, differences in soil solution N CVs between
young and old forests could be the result of physical and biological mechanisms. Harvesting
methods physically alter soil structure, which can result in greater soil solution N variation;
harvesting also reduces vegetative uptake, which can result in greater soil solution N variation
(Guo and others 2004). Nonetheless in our dataset, clay content appears to be working as a
proxy for both direct and indirect effects of soil hydrology on soil solution N variation.

281 That a single variable (clay content) can explain a large portion of the CV in soil solution N is an important discovery. However, a substantial fraction of variation in CVs was not 282 283 explained by clay. What mechanisms can account for this residual variance? Sand and silt contents explained only a small (although sometimes significant) proportion of the variation in 284 soil solution N CVs and K<sub>s</sub> CVs. This affirms, as suggested by Jarvis (2007), that clay plays a 285 greater role affecting soil hydrology than either silt or sand. Vegetation physiognomy can also 286 be ruled out as a dominant control. However, many complex biogenic and physiogenic 287 processes and properties govern heterogeneity in soil structure and hydrology. For example, the 288 abundance of mineral particles > 2mm are not included in soil texture measurements. Similarly, 289 290 root density and size as well as soil macrofauna can affect soil structure and hydrology (Wilding & Lin 2006). Accordingly, we expect that a significant proportion of the unexplained variation 291 292 in CVs are due to these site-specific variables that affect soil hydrology but are not explained by 293 clay content. This is particularly likely for  $K_s$  and DON which are largely controlled by physical 294 mechanisms (Vervoort and others. 1999; Kalbitz and others 2000).

Chemical mechanisms may also account for the observed relationship between clay
 content and variation in soil solution N as well as unexplained variation. Soil pH, clay
 mineralogy and organic matter composition can control the microbial transformation and solid-

298 solution exchange of dissolved N species (De Nobili and others 2002). In particular, DON is a 299 heterogeneous group of molecules that interact with soil solids in different ways. For example, 300 these molecules contain hydrophobic and hydrophilic species (Huygens and others 2008). In 301 particular, interactions between clay mineralogy and  $NO_3^-$  and DON may account for 302 unexplained variation in CVs. 303 In the case of  $NO_3$ , a significant proportion of the unexplained variation is likely due to 304 its active biological cycling. Many plants and soil microorganisms use NO<sub>3</sub> as a source of N. In contrast, DON is chemically heterogeneous; a significant fraction of DON is recalcitrant to 305 306 microbial degradation, and only a small portion of DON is available for direct biological uptake (i.e., amino acids; Chapin and others 2002; Neff and others 2003). Accordingly, NO<sub>3</sub><sup>-</sup> turnover is 307 faster than DON turnover and it is probable that the greater biological availability of  $NO_3^-$  is 308 309 responsible for the larger (relative to DON) variation observed for NO<sub>3</sub><sup>-</sup> at low clay contents. This interpretation of the relationship between  $NO_3^-$  and DON variation is similar to the 310 311 traditional comparison of biologically reactive chemicals with a conservative tracer (typically Cl<sup>-</sup>): molecules that are susceptible to rapid biological cycling have greater variation in 312 313 mean concentration than tracers. Manderscheid and Matzner (1995) found a strong correlation between Cl<sup>-</sup> in throughfall and soil solution, but no correlation between NO<sub>3</sub><sup>-</sup> in throughfall and 314 315 soil solution. Several reviews also indicate that hydrology can control soluble nutrient transport 316 through the soil (Kalbitz and others 2000, Neff and Asner 2001, Qualls 2000). Our 317 interpretation is also consistent with the occurrence of biological hotspots and hot moments of N 318 cycling that increase the heterogeneity of reactive N distribution in the soil (McClain and others 319 2003). We cannot isolate the mechanism driving the negative exponential relationship between 320 the difference in magnitude of NO<sub>3</sub><sup>-</sup> and DON CVs and clay content (Fig 3). Biological

mechanisms, physical mechanisms, chemical mechanisms, or their interaction could haveresulted in this observation.

Nitrate CVs in our data (range: 0.16-101.54%) were generally within the range reported 323 324 from single-site studies that were conducted with an objective to characterize spatial variability 325 in soil nitrate concentrations in lysimeter and salt extracted solutions (Robertson and others 326 1988, CV = 65%; Manderscheid and Matzner 1995, CV = 44.5-75.8%; Rothe and others 2002, 327 CV = 20-129%). One such report from a relatively high-clay soil (19.8%) that did not meet our data inclusion rules found much higher  $NO_3^-$  spatial variation (Asano et al. 2006, CV > 200%). 328 These data may reflect an unusually well structured high-clay soil. Although most high-clay 329 soils are poorly structured, exceptions do occur and they might not fit within the patterns 330 observed in our data set. Our lowest  $NO_3^- CV$  values (<1%) were much lower than these 331 single-site studies because none of them were conducted on extremely high or low clay content 332 soils that we found to be characterized by lower spatial variation. 333 334 Soil texture, and clay content in particular, have proven to be a useful proxy for

hydrology and robust predictor of global ecological and hydrological properties including soil 335 336 carbon storage (Jobbagy and Jackson 2000), plant resource limitation (Paruelo and others 1999), 337 dominant vegetation physiognomy (Prentice and others 1992) and water storage (Saxton and 338 others 1986). Our results extend soil texture's utility to describe ecosystem resource 339 heterogeneity. Soil N availability can limit both plant and microbial growth in terrestrial 340 ecosystems (Kaye and Hart 1997), so our data have important implications for variation in plant 341 and microbial activity across sites. For example, spatial heterogeneity of soil resources has 342 recently been proposed to explain why net N mineralization is a good predictor of plant-available 343 N in some ecosystems, and a poor predictor of plant-available N in other ecosystems (Schimel

and Bennett 2004). Our data add to this new component of soil N cycling theory by showing
that soil solution N will be more patchy, or spatially heterogeneous, in sites with intermediate
clay content. In these ecosystems, we would expect a diverse array of soil microsites that enable
both oxidative (e.g. nitrification) and reductive (e.g. denitrification) microbial processes to occur
in different soil patches (Schimel and Bennett 2004). In contrast, soils with very high or low
clay content will have less spatial variation in soil solution N, which would lead to decreased
heterogeneity in microbial processes.

Resource heterogeneity can shape ecosystems' productivity, diversity, function and structure (e.g., Hutchings and others 2003; Maestre and Reynolds 2007). These processes operate across scales from physiology (Jackson and Caldwell 1996) to ecosystems (Anderson and others 2004). For example, spatial variation in soil solution N can control population, community and ecosystem structure as well as function (Sulkava and Huhta 1998; Ettema and Wardle 2002; Anderson and others 2004). Our data should encourage further testing of resource heterogeneity hypotheses in natural systems without manipulation.

358

## 359 Acknowledgements

Meg Mobley and Dan Richter graciously provided unpublished data. MJC was supported by
 USDA National Needs and NOAA National Estuarine Research Reserve Graduate Fellowships.
 JPK was supported by the A.W. Mellon Foundation.

#### 363 Literature Cited

Adamson JK, Scott WA, Rowland AP. 1998. The dynamics of dissolved nitrogen in a blanket
 peat dominated catchment. Environmental Pollution 99:69-77.

- Anderson TM, McNaughton SJ. 2004. Scale-dependent relationships between the spatial
   distribution of a limiting resource and plant species diversity in an African grassland
   ecosystem. Oecologia 139:277-287.
- Asano Y. Compton JE, Church MR. 2006. Hydrologic flowpaths influence inorganic and
   organic nutrient leaching in a forest soil. Biogeochemistry 81:191-204.
- 371 Bohlen PJ, Groffman PM, Driscoll CT, Fahey TJ, Siccama TG. 2001. Plant-soil-microbial

interactions in a northern hardwood forest. Ecology 82:965-978.

- Bohlen PJ, Pelletier, DM, Groffman, PM, Fahey, TJ, Fisk, MC. 2004. Influence of earthworm
- 374 invasion on redistribution and retention of soil carbon and nitrogen in northern temperate
- 375 forests. Ecosystems 7: 13-27.
- Brown JH, Mehlman DW, Stevens GC. 1995. Spatial variation in abundance. Ecology
  76:2028-2043.
- Brenner RE, Boone RD, Jones JB, Lajtha K, Ruess RW. 2006. Successional and physical
  controls on the retention of nitrogen in an undisturbed boreal forest ecosystem.
- 380 Oecologia 148:602-611. 😷
- Buczko U, Bens O, Huttle RF. 2006. Water infiltration and hydrophobicity in forest soils of a
  pine-beech transformation chronosequence. Journal of Hydrology 331:383-395.
- 383 Carnol, M, Ineson P, Anderson JM, Beese F, Berg MP, Bolger T, Couteaux MM, Cudlin P,
- 384 Dolan S, Raubuch M, Verhoff HA. 1997. The effects of ammonium sulphate deposition
  385 and root sinks on soil solution chemistry in coniferous forest soils. Biogeochemistry
  386 38:255-280.
- Collins, SL, Smith MD. 2006. Scale-dependent interaction of fire and grazing on community
   heterogeneity in tallgrass prairie. Ecology 87:2058-2067.

- Chapin FS III, Matson PA, Mooney HA. 2002. Principles of Terrestrial Ecosystem Ecology.
  Springer. NY, USA.
- 391 Currie WS, Aber JD, McDowell WH, Boone RD, Magill AH. 1996. Vertical transport of
- 392 dissolved organic C and N under long-term N amendments in pine and hardwood forests.
- Biogeochemistry 35:471-505.
- De Schrijver A, Nachtergale L, Staelens, J, Luyssaert S, De Keersmaeker, L. 2004. Comparison
   of throughfall and soil solution chemistry between a high density Corsican pine stand and
   a naturally regenerated silver birch stand. Environmental Pollution 131:93-105.
- 397 De Schrijver A, Geudens G, Augusto L, Staelens J, Martens J, Wuyts K, Gielis L, Verheyen K.
- 398 2007. The effect of forest type on throughfall deposition and seepage flux: a review.
- 399 Oecologia 153:663-674.
- De Schrijver A, Staelens J, Wuyts K, Van Hoydonck G, Janssen N, Mertens J, Gielis L, Geudens
  G, Augusto L, Verheyen K. 2008. Effect of vegetation type on throughfall deposition
  and seepage flux. Environmental Pollution 153:295-303.
- Dijkstra FA, West JB, Hobbie SE, Trost JB, Reich PB. 2007. Dissolved inorganic and organic N
  leaching from a grassland field experiment: interactive effects of plant species richness,
- 405 atmospheric [CO2] and N fertilization. Ecology 88:490-500.
- 406 Dittman JA, Driscoll CT, Groffman PM, Fahey TJ. 2007. Dynamics of nitrogen and dissolved
  407 organic carbon at the Hubbard Brook Experimental Forest. Ecology 88:1153-1166.
- 408 Emmett BA, Boxman D, Bredemeier M, Gundersen P, Kjonaas OJ, Moldan F, Schleppi P,
- 409 Tietema A, Wright RF. 1998. Predicting the effects of atmospheric nitrogen deposition
- 410 in conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems
- 411 1:352-360.

- 412 Ettema CH, Wardle DA. 2002. Spatial soil ecology. Trends in Ecology and Evolution 17:177413 183.
- 414 Fang YT, Gundersen P, Mo JM, Zhu, WX. 2008. Input and output of dissolved organic and
- 415 inorganic nitrogen in subtropical forests of South China under high air pollution.
- 416 Biogeosciences 5:339-352.
- 417 Fisk MC, Zak DR, Crow TR. 2002. Nitrogen storage and cycling in old- and second-growth
  418 northern hardwood forests. Ecology 83:73-87.
- Fisher SG, Sponseller RA, Heffernan JB. 2004. Horizons in biogeochemistry: flowpaths to
  progress. Ecology 85:2369-2379.
- Fraterrigo JM, Rusak JA. 2008. Disturbance-driven changes in the variability of ecosystem
  patterns and processes. Ecology Letters 11:756-770.
- Grace, JM III, Skaggs RW, Cassel, DK. 2006. Soil physical changes associated with forest
  harvesting operations on an organic soil. Soil Science Society of America Journal
  70:503-509.
- 426 Gou, D, Mou P, Jones RH, Mitchell RB. 2004. Spatio-temporal patterns of soil available
- 427 nutrients following experimental disturbance in a pine forest. Oecologia 138:613-621.
- 428 Hagedorn F, Bucher JB, Schleppi P. 2001. Contrasting dynamics of dissolved inorganic and
- 429 organic nitrogen in soil and surface waters of a forested catchments with Gleysols.
- 430 Geoderma 100:173-192.
- Holloway JM, Dahlgren RA. 2001. Seasonal and even-scale variations in solute chemistry for
  four Sierra Nevada catchments. Journal of Hydrology 250:106-121.

433 Hope, GD. 2009. Clearcut harvesting effects on soil and creek inorganic nitrogen in high

- 434 elevation forests of southern interior British Columbia. Canadian Journal of Soil Science
  435 89:35-44.
- 436 Hutchings MJ, John EA, Wijesinghe DK. 2003. Toward understanding the consequences of soil

heterogeneity for plant populations and communities. Ecology 84:2322-2334.

- 438 Huygens D, Boeckx P, Templer P, Paulino L, van Cleemput O, Oyarzun C, Muller C, Godoy R.
- 439 2008. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils.
  440 Nature Geoscience 1:543-548.
- 441 Jackson RB, Caldwell MM. 1996. Integrating resource heterogeneity and plant plasticity:
- 442 Modeling nitrate and phosphorus uptake in a patchy soil environment. Journal of
  443 Ecology 84:891-903.
- 444 Jarvis NJ. 2007 A review of non-equilibrium water flow and solute transport in soil macropores:
- 445 principles, controlling factors and consequences for water quality. European Journal of
  446 Soil Science. 58:523-546.
- Jansson KJ, Johansson J. 1998. Soil changes after traffic with a tracked and a wheeled forest
  machine: a case study on a silt loam in Sweden. Forestry 71:57-66.
- Jobbágy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation
  to climate and vegetation. Ecological Applications 10:423-436.
- 451 Johnson DW, Susfalk RB, Dahlgren DA, Caldwell TG, Miller WW. 2001. Nutrient fluxes in a
- 452 snow-dominated, semi-arid forest: Spatial and temporal patterns. Biogeochemistry
- 453 55:219-245.

| 454 | Johnson MS, Lehmann J, Guimaraes Couto E, Novaes Filho JP, Riha SJ. 2006. DOC and DIC        |
|-----|----------------------------------------------------------------------------------------------|
| 455 | in flowpaths of Amazonian headwater catchments with hydrologically contrasting soils.        |
| 456 | Biogeochemistry 81:45-57.                                                                    |
| 457 | Jones DL, Willett VB. 2006. Experimental evaluation of methods to quantify dissolved organic |
| 458 | nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology &                    |
| 459 | Biochemistry 38:991-999.                                                                     |
| 460 | Julia Ferrer M, Monreal Estrela T, Sanchez del Corral Jimenez A, Garcia Melendez E. 2004.    |
| 461 | Constructing a saturated hydraulic conductivity map of Spain using pedotransfer              |
| 462 | functions and spatial prediction. Geoderma 123:257-277.                                      |
| 463 | Kaiser K, Guggenberger G. 2005. Storm flow flushing in a structured soil changes the         |
| 464 | composition of dissolved organic matter leached into the subsoil. Geoderma 127:177-          |
| 465 | 187.                                                                                         |
| 466 | Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E. 2000. Controls on the dynamics of    |
| 467 | dissolved organic matter in soils: A review. Soil Science 165:277-304.                       |
| 468 | Kaye JP, Hart SC. 1997. Competition for nitrogen between plants and soil microorganisms.     |
| 469 | Trends in Ecology and Evolution 12:139–143.                                                  |
| 470 | Knapp AK, Smith MD 2001. Variation among biomes in temporal dynamics of aboveground          |
| 471 | primary production. Science 291:481-484.                                                     |
| 472 | Kratz TK, Deegan LA, Harmon ME, Lauenroth WK. 2003. Ecological variability in space and      |
| 473 | time: Insights gained from the US LTER program. Bioscience 53: 57-67.                        |
| 474 | Lajtha K, Seely B, Valiela I. 1995. Retention and leaching losses of atmospherically-derived |
| 475 | nitrogen in the aggrading coastal watershed of Waquiot Bay, MA. Biogeochemistry              |
| 476 | 28:33-54.                                                                                    |

| 477 | Lajtha K, Crow S, Yano Y, Kaushal SS, Sulzman SW, Sollins P, Spears JDH. 2005. Detrital        |
|-----|------------------------------------------------------------------------------------------------|
| 478 | controls on soil solution N and dissolved organic matter in soils: a field experiment.         |
| 479 | Biogeochemistry 76:261-281.                                                                    |
| 480 | Li Y, Chen D, White RE, Zhu A, Zhang J. 2007. Estimating soil hydraulic properties of Fengqiu  |
| 481 | County soils in the North China Plain using pedo-transfer functions. Geoderma 138:261-         |
| 482 | 271.                                                                                           |
| 483 | Lilienfein J, Qualls RG, Uselman SM, Bridgham SD. 2004. Adsorption of dissolved organic        |
| 484 | carbon and nitrogen in soils of a weathering chronosequence. Soil Science Society of           |
| 485 | America Journal 68:292-305.                                                                    |
| 486 | Lohse KA, Matson PA. 2005. Consequences of nitrogen additions for soil processes and soil      |
| 487 | solution losses from wet tropical forests. Ecological Applications15: 1629-1648.               |
| 488 | Lovett, GM, Weathers, KC, Arthur, MA. 2002. Control of nitrogen loss from forested             |
| 489 | watersheds by soil carbon:nitrogen ratio and tree species composition. Ecosystems              |
| 490 | 5:712-718.                                                                                     |
| 491 | Maestre FT, Reynolds, JF. 2007. Amount or pattern? Grassland responses to the heterogeneity    |
| 492 | and availability of two key resources. Ecology 88:501-511.                                     |
| 493 | Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler P. 1997. Biogeochemical      |
| 494 | response of forest ecosystems to simulated chronic nitrogen deposition. Ecological             |
| 495 | Applications 7:402-415.                                                                        |
| 496 | Malmer A. 1996. Hydrological effects and nutrient losses of forest plantation establishment on |
| 497 | tropical rainforest land in Sabah, Malaysia. Journal of Hydrology 174:129-148.                 |

| 498 | Manderscheid B, Matzner E. 1995. Spatial and temporal variation of soil solution chemistry and |
|-----|------------------------------------------------------------------------------------------------|
| 499 | ion fluxes through the soil in a mature Norway Spruce (Picea abies (L.) Karst.) stand.         |
| 500 | Biogeochemistry 30:99-114.                                                                     |
| 501 | Marques R, and Ranger J. 1997. Nutrient dynamics in a chronosequence of Douglas-fir            |
| 502 | (Pseudotsuga menziesii (Mirb.) Franco) stands on the Beaujolais Mounts (France). 1:            |
| 503 | Qualitative approach. Forest Ecology and Management 91:255-277.                                |
| 504 | McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW,           |
| 505 | Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and               |
| 506 | hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301-         |
| 507 | 312.                                                                                           |
| 508 | McLaughlin JW. Phillips SA. 2006. Soil carbon, nitrogen and base cation cycling 17 years after |
| 509 | whole tree harvesting in a low-elevation red spruce (Picea rubens)-balsam fir (Abies           |
| 510 | balsamea) forested watershed in central Maine, USA. Forest Ecology and Management              |
| 511 | 222:234-253.                                                                                   |
| 512 | Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E. 2000. Fluxes and concentrations of     |
| 513 | dissolved organic carbon and nitrogen- a synthesis for temperate forests.                      |
| 514 | Biogeochemistry 52:173-205.                                                                    |
| 515 | Mitchell MJ, Driscoll CT, Owen JS, Schafer D, Michener R, Raynal DJ. 2001. Nitrogen            |
| 516 | biogeochemistry of three hardwood ecosystems in the Adirondack region of New York.             |
| 517 | Biogeochemistry 56:93-133.                                                                     |
| 518 | Murphy JD, Johnson DW, Miller WW, Walker RF, Blank RR. 2006. Prescribed fire effects on        |
| 519 | forest floor and soil nutrients in a Sierra Nevada forest. Soil Science 171:181-199.           |

| 520 | NRCS 2008. Soil Survey Staff, Natural Resources Conservation Service, United States           |
|-----|-----------------------------------------------------------------------------------------------|
| 521 | Department of Agriculture. Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/               |
| 522 | Accessed: Nov. 2008.                                                                          |
| 523 | Neff JC, Asner GP. 2001. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a  |
| 524 | model. Ecosystems. 4: 29-48.                                                                  |
| 525 | Neff JC, Chapin III FS, Vitousek PM. 2003. The role of dissolved organic nitrogen in nutrient |
| 526 | retention and plant mineral nutrition; reconciling observations with ecological theory.       |
| 527 | Frontiers in Ecology and Environmental Science. 1: 205-211.                                   |
| 528 | Neill C, Piccolo MC, Cerri CC, Stedler PA, Melillo JM. 2006. Soil solution nitrogen losses    |
| 529 | during clearing of lowland Amazon forest for pasture. Plant and Soil 281:233-245.             |
| 530 | Neirynck J, Mirtcheva S, Sioen G, Lust N. 2000. Impact of Tilia platyphyllos Scop., Fraxinus  |
| 531 | excelsior L., Acer pseudoplatanus L., Quercus robur L., and Fagus sylvatica L. on             |
| 532 | earthworm biomass and physico-chemical properties of a loamy soil. Forest Ecology and         |
| 533 | Management 133:275-286.                                                                       |
| 534 | Park JH, Matzner E. 2003. Controls on the release of dissolved organic carbon and nitrogen    |
| 535 | from a deciduous forest floor investigated by manipulations of aboveground litter inputs      |
| 536 | and water flux. Biogeochemistry 66:265-286.                                                   |
| 537 | Paruelo JM, Lauenroth WK, Burke IC, Sala OE. 1999. Grassland precipitation use efficiency     |
| 538 | varies across a resource gradient. Ecosystems 2:64-68.                                        |
| 539 | Perkins, DB, Haws NW, Jawitz JW, Das BS, Rao PSC. 2007. Soil hydraulic properties as          |
| 540 | ecological indicators in forested watersheds impacted by mechanized military training.        |
| 541 | Ecological Indicators 7:589-597.                                                              |

542 Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM. 1992. A global
543 biome model based on plant physiology and dominance, soil properties and climate.

544 Journal of Biogeography 19:117-134.

545 Qualls RG. 2000. Comparison of the behavior of soluble organic and inorganic nutrients in

546 forest soils. Forest Ecology and Management 138:29-50.

Qualls RG, Richardson CJ. 2003. Factors controlling concentration, export, and decomposition
of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 62:197-

549 229.

550 Raich JW, Potter CS. 1995. Global patterns of carbon dioxide emissions from soils. Global

551 Biogeochemical *Cycles* 9:23-36.

- 552 Ramos MC, Cots-Folch R, Martinez-Casanovas JA. 2007. Effects of land terracing on soil
- properties in the Priorat region in northeastern Spain: A multivariate analysis. Geoderma142:251-261.
- 555 Rothe A, Huber C, Kreutzer K, Weis W. 2002. Deposition and soil leaching in stands of
- Norway spruce and European Beech: Results from the Hogwald research in comparison
  with other European case studies. Plant and Soil 240:33-45.
- Robertson GP, Huston MA, Evans FC, Tiedje JM. 1988. Spatial variability in a successional
- 559 plant community: Patterns of nitrogen mineralization, nitrification, and denitrification.
- 560 Ecology 69:1517-1524.
- 561 Saxton KE, Rawls WJ, Romberger JS, Papendick RI. 1986. Estimating generalized soil-water
- 562 characteristics from texture. Soil Science Society of America Journal 50:1031-1036.

| 563 | Schack-Kirchner H, Fenner PT, Hildebrand EE. 2007. Different responses in bulk density and |
|-----|--------------------------------------------------------------------------------------------|
| 564 | saturated hydraulic conductivity to soil deformation by logging machinery on a Ferralsol   |
| 565 | under native forest. Soil Use and Management 23:286-293.                                   |

- 566 Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ,
- 567 Townsend AR. 1994. Climatic, edaphic and biotic controls over storage and turnover of
  568 carbon in soils. Global Biogeochemical Cycles 8:279-293.
- Schimel JP, Bennett J. 2004. Nitrogen mineralization: Challenges of a changing paradigm.
  Ecology 85:591-602.
- Schroth G, Seixas R, Da Silva LF, Teixera WG, Zech W. 2000. Nutrient Concentrations and
  acidity in ferralitic soil under perennial cropping, fallow and primary forest in central
  Amazonia. European Journal of Soil Science 51:219-231.
- 574 Schrumpf, M, Zech W, Lehmann J, Lyaruu HVC, 2006. TOC, TON, TOS and TOP in rainfall,
- 575 throughfall, litter percolate and soil solution of a montane rainforest succession at Mt.
- 576 Kilimanjaro, Tanzania. Biogeochemistry 78:361-387.
- Schwendenmann L, Veldkamp E. 2005. The role of dissolved organic carbon, dissolved organic
  nitrogen and dissolved inorganic nitrogen in a tropical wet forest ecosystem. Ecosystems
  8:339-351.
- Sheridan GJ, Lane PNJ, Noske PJ. 2007. Quanitifcation of hillslope runoff and erostion
  processes before and after wildfire in a wet *Eucalyptus* forest. Journal of Hydrology
  343:12-48.
- 583 Silva RG, Holub SM, Jorgensen EE, Ashanuzzaman ANM. 2005. Indicators of nitrate leaching
- 584 loss under different land use of clayey and sandy soils in southeastern Oklahoma.
- 585 Agriculture, Ecosystems and Environment 109:346-359.

Strahm BD, Harrison RB, Terry TA, Flaming BL, Licata CW, Petersen KS. 2005. Soil solution
nitrogen concentrations and leaching rates as influenced by organic matter retention on a
highly productive Douglas-fir site. Forest Ecology and Management 218:74-88.

589 Sulkava P, Huhta V. 1998. Habitat patchiness affects decomposition and faunal diversity: a

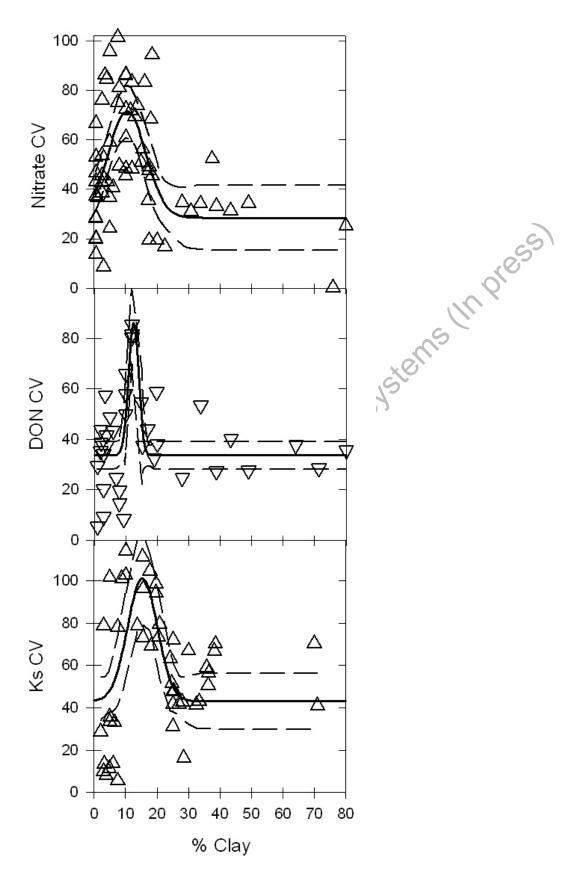
590 microcosm experiment on forest floor. Oecologia 116:390-396.

- 591 Tilman, D. 1999. The ecological consequences of changes in biodiversity: A search for general
  592 principles. Ecology 80:1455-1474.
- 593 Vervoort RW, Radcliffe DE, West, LT. 1999. Soil structure development and preferential
  594 solute flow. Water Resources Research 35:913-928.
- 595 Vitousek, PM, Gosz JR, Grier CG, Melillo JM, Reiners WR. 1982. A comparative analysis of
  596 potential nitrification and nitrate mobility in forest ecosystems. Ecological Monographs
  597 52:155-177.
- 598 Vourtilis GL, Pasquini S, Zorba G. 2007. Plant and soil N response of southern Californian

599 Semi-arid shrublands after 1 year of experimental N deposition. Ecosystems 10:263-279.

600 Whittaker RH, Likens GE, Bormann FH, Eaton JS, Siccama TG. 1979. The Hubbard Brook

601 Ecosystem Study: Forest nutrient cycling and element behavior. Ecology 60:203-220.


Wilding, LP, Lin HS 2006. Advancing the frontiers of soil science towards a geoscience.
 Geoderma 131:257-274.

Ku YJ, Burger JA, Aust WM, Patterson SC, Miwa M, Preston DP. 2002. Changes in surface

- water table depth and soil physical properties after harvest and establishment of loblolly
- 606 pine (*Pinus taeda* L.) in Atlantic coastal plain wetlands of South Carolina. Soil & Tillage
- 607 Research 63:109-121.

| 608 | Young MH, McDonald EV, Caldwell TG, Benner SG, Meadows DG. 2004. Hydraulic        |
|-----|-----------------------------------------------------------------------------------|
| 609 | properties of a desert soil chronosequence in the Mojave Desert, USA. Vadose Zone |
| 610 | Journal 3:956-953.                                                                |

- 611 Zak DR, Pregitzer KS, Holmes WE, Burton AJ, Zogg GP. 2004. Anthropogenic N deposition
- and the fate of <sup>15</sup>NO<sub>3</sub>- in a northern hardwood ecosystem. Biogeochemistry 69:143-157. 612
- 613 Zar JH. 1999. Biostatistical Analysis. Prentice Hall, NJ, USA.
- Ziegler AD, Negishi JN, Sidle RC, Noguchi S, Nik, AR. 2006. Impacts of logging disturbance 614
- on hillslope saturated hydraulic conductivity in a tropical forest in Peninsular Malaysia. 615
- 616 Catena 67:89-104.
- 617



- Figure 1. Nitrate  $(NO_3)$ , dissolved organic N (DON) and K<sub>s</sub> (soil saturated hydraulic
- conductivity) coefficients of variation and corresponding clay contents. Each triangle represents
- an independent report. The bold, solid lines correspond to modeled data from a 4 parameter

622 Gaussian function 
$$y = y_o + ae \left[ -0.5 \left( \frac{x - x_o}{b} \right)^2 \right]$$
. Nitrate,  $r^2 = 0.35$ ,  $p < 0.0001$ ; DON,  $r^2 = 0.53$ ,  $p$ 

< 0.0001; K<sub>s</sub> r<sup>2</sup> = 0.39, p = 0.0001. The smaller dashed lines represent the 95% and 5% 

.5% a. Ecosystems unpression and the second confidence intervals of the regression modeled data. 

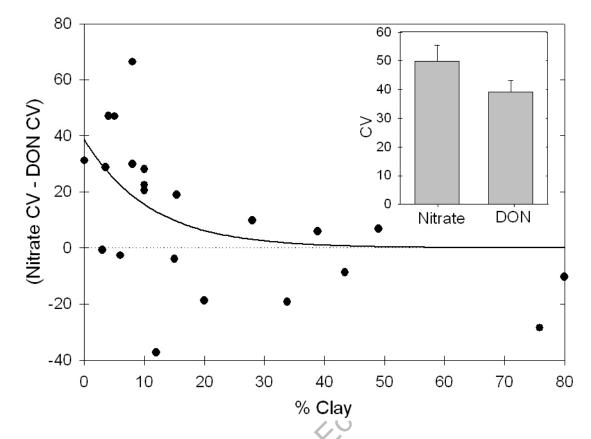
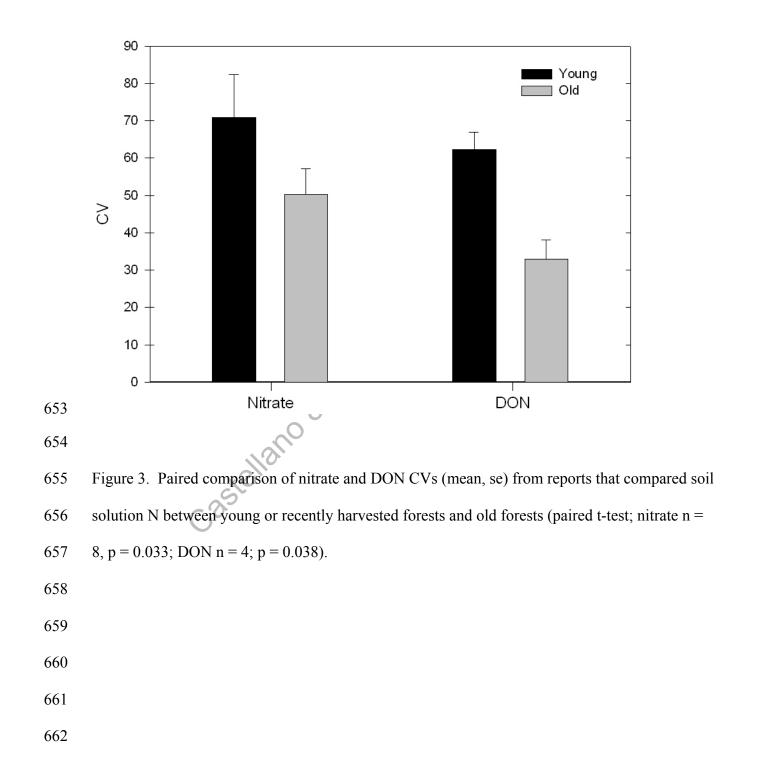




Figure 2. Inset: Mean (se) nitrate and DON CVs from the same lysimeters within reports (paired t-test n = 23; p = 0.072). However, the difference in magnitude of variation was a function of clay content. On the y-axis, zero corresponds to no difference between nitrate and DON CVs. The bold curve represents modeled data from the exponential function  $y = ae^{-bx}$  (r<sup>2</sup> = 0.30; p = 0.007).

- 645
- 646
- 647
- 648
- 649



|        | Nitrate CV                | DON CV                    | Saturated Hydraulic<br>Conductivity CV |
|--------|---------------------------|---------------------------|----------------------------------------|
| % Sand | $r^2 = 0.03 (p = .6365)$  | $r^2 = 0.15 (p = 0.1706)$ | $r^2 = 0.29 (p = 0.0028)$              |
| % Silt | $r^2 = 0.13 (p = 0.0522)$ | $r^2 = 0.08 (p = .4367)$  | $r^2 = 0.23 (p = 0.0133)$              |
| % Clay | $r^2 = 0.35 (p < 0.0001)$ | $r^2 = 0.53 (p < 0.0001)$ | $r^2 = 0.39 (p = 0.0001)$              |

efficient o. Ecosystems un presentation of the second of t Table 1. Four Parameter Gaussian function fit to soil texture and coefficient of variation (CV) 

data. See Figure 2 caption for equation. 

#### Nitrate Data

|                                                            |                      |                                                                    |             |             |             |                |          |                  |            | approximate  |                                                      |                                                                               |
|------------------------------------------------------------|----------------------|--------------------------------------------------------------------|-------------|-------------|-------------|----------------|----------|------------------|------------|--------------|------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                            |                      |                                                                    |             |             |             |                | Sampling | # lysimeters /   |            | total sample |                                                      |                                                                               |
| Source                                                     | Location             | Texture Determination                                              | %Sand       | % Silt      | % Clay      | CV (%)         | Method   | Replicate/ Depth | Replicates | times        | depth                                                | dominant vegetation                                                           |
| Adamson (1998)                                             | United Kingdom       | Mean Text. Class (Peat)                                            | Peat        | Peat        | Peat        | 36.64          | Т        | 1                | 6          | 78           | 10 & 50 cm mean                                      | Heath                                                                         |
| Bohlen et al. (2004)                                       | NY, USA              | Author Contacted/ WSS                                              | 32.1        | 55.9        | 12          | 83.20          | O&T Mean | 4                | 3          | 27           | 15 & 40 cm mean                                      | Hardwood-Deciduous                                                            |
| Borken et al. (2004)                                       | Solling, Germany     | Borken & Beese (2002)                                              | 14          | 58          | 28          | 34.6           | Т        | 4                | 3          | 12           | 10cm                                                 | Conifer                                                                       |
| Borken et al. (2004)                                       | Solling, Germany     | Borken & Beese (2002)                                              | 39          | 46          | 15          | 50.86          | Т        | 4                | 3          | 13           | 10cm                                                 | Conifer                                                                       |
| Brenner et al. (2006)                                      | AK, USA              | WSS                                                                | 15.05       | 77          | 8           | 49.45          | Т        | 5,4              | 3          | 20           | 12 & 40 cm mean                                      | Hardwood-Deciduous                                                            |
| Brenner et al. (2006)                                      | AK, USA              | WSS                                                                | 15.05       | 77          | 8           | 81.01          | Т        | 5,4              | 3          | 20           | 12 & 40 cm mean                                      | Conifer                                                                       |
| De Schrijver et al. (2008)                                 | Belgium              | Author contacted<br>Author contacted                               | >90<br>>90  | 5-9<br>5-9  | ්<br>ර      | 42.58<br>45.50 | T<br>T   | 3<br>3           | 4          | 12<br>12     | 100 cm<br>100 cm                                     | Hardwood-Deciduous<br>Conifer                                                 |
| De Schrijver et al. (2008)<br>De Schrijver et al. (2008)   | Belgium<br>Belgium   | Author contacted<br>Author contacted                               | >90         | 5-9         | ्<br>उ      | 43.30<br>53.76 | T        | 3                | 2          | 12           | 100 cm                                               | Conifer                                                                       |
| De Schrijver et al. (2008)                                 | Belgium              | Author contacted                                                   | >90         | 5-9         | 5           | 76.09          | T        | 3                | 2          | 12           | 25cm                                                 | Heath                                                                         |
| De Schrijver et al. (2008)                                 | Belgium              | Author contacted                                                   | >90         | 5-9         | 5           | 38.46          | T        | 3                | 2          | 12           | 25cm                                                 | Heath                                                                         |
| Dijkstra et al. (2007)                                     | MN, USA              | Author contacted                                                   | 94          | 2.5         | 3.5         | 86.16          | т        | 1                | 12         | 20           | 100cm                                                | Grassland                                                                     |
| Dittman et al. (2007)                                      | NY, USA              | Mean Text. Class (Sandy Loam)                                      | 65          | 25          | 10          | 72.45          | 0        | 1                | 2          | 145          | 22.5cm, 44.5cm mean                                  | Conifer                                                                       |
| Dittman et al. (2007)                                      | NY, USA              | Mean Text. Class (Sandy Loam)                                      | 65          | 25          | 10          | 85.96          | 0        | 1                | 3          | 145          | 22.5cm, 44.5cm mean                                  | Hardwood-Deciduous                                                            |
| Dittman et al. (2007)                                      | NY, USA              | Mean Text. Class (Sandy Loam)                                      | 65          | 25          | 10          | 86.31          | 0        | 1                | 3          | 145          | 22.5cm, 44.5cm mean                                  | Hardwood-Deciduous                                                            |
| Fang et al. (2008)*                                        | Zhaoqing, China      | Author contacted                                                   | 36.8        | 29.4        | 33.8        | 34.12          | 0        | 2                | 3          | 24           | 20cm                                                 | Hardwood-Evergreen (young growth)                                             |
| Fang et al. (2008)*                                        | Zhaoqing, China      | Author contacted                                                   | 22.1        | 34.5        | 43.4        | 31.26          | 0        | 2                | 3          | 24           | 20cm                                                 | Hardwood-Evergreen (old growth)                                               |
| Fisk et al. (2002)*                                        | MI, USA              | Reported                                                           | 63          | 32          | 4           | 84.57          | Т        | 8                | 3          | 30           | 100cm                                                | Hardwood-Deciduous (old growth)                                               |
| Fisk et al. (2002)*                                        | MI, USA              | Reported                                                           | 70          | 25          | 5           | 95.78          | Т        | 8                | 3          | 30           | 100cm                                                | Hardwood-Deciduous (young growth)                                             |
| Hagedorn et al. (2001)†                                    | Switzerland          | Reported                                                           | 5           | 46          | 49          | 34.38          | Т        | 1                | 5          | >20          | 5cm                                                  | Conifer                                                                       |
| Holloway and Dahlgren (2001)                               | CA, USA              | Mean Text. Class (Sandy Loam)                                      | 65          | 25          | 10          | 48.35          | С        | 1                | 3          | 12           | 30-60cm                                              | Savanna-Shrub                                                                 |
| Holloway and Dahlgren (2001)                               | CA, USA              | Mean Text. Class (Silt Loam)                                       | 25          | 67.5        | 13.75       | 73.85          | С        | 1                | 3          | 12           | 30-60cm                                              | Savanna-Shrub                                                                 |
| Hope (2009)*                                               | BC, Canada<br>Chile  | Reported                                                           | 64.67<br>71 | 30.97<br>23 | 4.27        | 42.94<br>40.64 | T<br>T   | 6                | 3          | ~24<br>na    | 50-60cm<br>10, 50, 100 cm mean                       | Conifer                                                                       |
| Huygens et al. (2008)<br>Johnson et al. (2001)             | NV, USA              | Huygens et al. (2007)<br>Author Contacted/ Mean Text. Class (Sand) | 92.5        | 23<br>7.5   | 6<br>5      | 40.64<br>59.16 | T        | 1                | 4          | na           | 10, 50, 100 cm mean<br>15 and 30 mean                | Hardwood-Evergreen<br>Conifer                                                 |
| Jones and Willett (2006)                                   | United Kingdom       | Author Contacted Mean Text: Class (Sand)                           | 19          | 69          | 12          | 48.19          | C        | 1                | 6          | na           | A horizon                                            | Hardwood-Deciduous                                                            |
| Jones and Willett (2006)                                   | United Kingdom       | Author Contacted                                                   | 44          | 36          | 20          | 19.34          | c        | 1                | 6          | na           | A horizon                                            | Hardwood-Deciduous                                                            |
| Lajtha et al. (1995)                                       | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 20.12          | õ        | 4                |            | >10          | 50cm                                                 | Grassland                                                                     |
| Lajtha et al. (1995)                                       | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 28.28          | õ        | 4                | 2          | >10          | 50cm                                                 | Savanna-Shrub                                                                 |
| Lajtha et al. (1995)*                                      | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 43.07          | 0        | 4                |            | >10          | 50cm                                                 | Mixed Hardwood-Deciduous (young growth)                                       |
| Lajtha et al. (1995)                                       | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 53.04          | 0        | 4                | 2          | >10          | 50cm                                                 | Conifer                                                                       |
| Lajtha et al. (1995)                                       | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 19.74          | 0        | 4                | 2          | >10          | 50cm                                                 | Mixed Hardwood-Deciduous                                                      |
| Lajtha et al. (1995)                                       | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 66.60          | 0        | 4                | 2          | >10          | 50cm                                                 | Hardwood-Deciduous                                                            |
| Lajtha et al. (1995)                                       | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 46.61          | 0        | 4                | 2          | >10          | 50cm                                                 | Hardwood-Deciduous                                                            |
| Lajtha et al. (1995)*                                      | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 37.42          | 0        | - C 4            | 2          | >10          | 50cm                                                 | Mixed Hardwood-Deciduous (old growth)                                         |
| Lajtha et al. (1995)                                       | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 13.78          | 0        | 4                | 2          | >10          | 50cm                                                 | Hardwood-Deciduous                                                            |
| Lajtha et al. (1995)                                       | MA, USA              | Author Contacted/ Seely & Lajtha 1997                              | 90          | 10          | <1          | 28.46          | O<br>T   | 4                | 2          | >10          | 50cm                                                 | Hardwood-Deciduous                                                            |
| Lajtha et al. (2005)<br>Lohse and Matson (2005)†           | OR, USA<br>HA, USA   | Reported<br>WSS                                                    | na<br>31.5  | na<br>31    | 13<br>37.5  | 69.28<br>52.29 | T        | 5<br>2           | 3<br>4     | na<br>>20    | 30 & 100 cm mean<br>47cm                             | Conifer<br>Hardwood-Evergreen (300 year old soil)                             |
| Lohse and Matson (2005)†                                   | HA, USA<br>HA, USA   | WSS                                                                | 48.6        | 34.1        | 17.3        | 32.29          |          | 2                | 4          | >20          | 28cm                                                 | Hardwood-Evergreen (500 year old soll)<br>Hardwood-Evergreen (4.1my old soll) |
| Marques and Ranger (1997)*                                 | France               | Reported                                                           | 48.0        | 50.67       | 17.5        | 71.88          |          | 1                | 4          | 32           | 28cm<br>15, 30, 60 mean                              | Conifer                                                                       |
| Marques and Ranger (1997)<br>Marques and Ranger (1997)     | France               | Reported                                                           | 45.25       | 38.73       | 16.025      | 83.25          | 0        | 1                | 4          | 32           | 15, 30, 60 mean                                      | Conifer                                                                       |
| Marques and Ranger (1997)*                                 | France               | Reported                                                           | 44.33       | 35.08       | 18.05       | 68.35          | ) o      | 1                | 4          | 32           | 15, 30, 60, mean                                     | Conifer                                                                       |
| McLaughlin and Phillips (2006)*                            | ME, USA              | Author Contacted/ Mean Text. Class (Loamy Sand)                    | 80          | 15          | 7.5         | 75.00          | Ť        | 2                | 4          | 21           | 25 cm & 50cm mean                                    | Conifer (old growth)                                                          |
| McLaughlin and Phillips (2006)*                            | ME, USA              | Author Contacted/Mean Text. Class (Loamy Sand)                     | 80          | 15          | 7.5         | 101.54         | Т        | 2                | 8          | 21           | 25 cm & 50cm mean                                    | Conifer (young growth)                                                        |
| Mitchell et al. (2001)                                     | NY, USA              | WSS/ Mitchell et al. (2003)                                        | 37.5        | 38.75       | 17.5        | 47.64          | Т        | 3-4              | 3          | >10          | 15cm & 50cm mean                                     | Hardwood-Deciduous                                                            |
| Mitchell et al. (2001)                                     | NY, USA              | WSS/ Mitchell et al. (2003)                                        | 92.5        | 7.5         | 5           | 36.79          | Т        | 3-4              | 3          | >10          | 15cm & 50cm mean                                     | Hardwood-Deciduous                                                            |
| Mitchell et al. (2001)                                     | NY, USA              | WSS/ Mitchell et al. (2003)                                        | 65          | 25          | 10          | 60.92          | Т        | 3-4              | 3          | >10          | 15cm & 50cm mean                                     | Hardwood-Deciduous                                                            |
| Mobley, Richter et al. (Unpublished)                       | SC, USA              | Richter et al. (1994)                                              | 67.6        | 17          | 15.4        | 56.25          | 0        | 12               | 1          | 19           | 7.5cm                                                | Hardwood-Deciduous                                                            |
| Murphy et al. (2006)*                                      | NV, USA              | Author Contacted/ Mean Text. Class (Loam)                          | 37.5        | 38.75       | 17.5        | 49.05          | Т        | 1                | 4          | 3 years      | 30cm                                                 | Conifer                                                                       |
| Neill et al. (2006)*                                       | Brazil               | Reported                                                           | na          | na          | 30.75       | 31.09          | Т        | 1                | 5          | >20          | 30cm & 100cm mean                                    | Hardwood-Evergreen                                                            |
| Rothe et al. (2002)                                        | Germany              | Kreutzer and Weiss (1998)                                          | 29.02       | 47.01       | 18.45       | 45.33          | Т        | 1                | 10         | 48           | 20, 40, 100cm                                        | Hardwood-Deciduous                                                            |
| Rothe et al. (2002)                                        | Germany              | Kreutzer and Weiss (1998)                                          | 29.02       | 47.01       | 18.45<br>80 | 94.33<br>25.30 | T<br>T   | 1                | 10         | 48           | 20, 40, 100cm                                        | Conifer                                                                       |
| Schroth et al. (2000)<br>Schwandanmann and Valdkamp (2005) | Brazil<br>Costa Rica | Reported<br>Reported                                               | na          | na<br>na    | 80<br>75.86 | 25.30<br>0.16  | T        | 1                | 6<br>4     | 13<br>>20    | 10cm & 60cm mean<br>20, 40, 75, 150, 250 350 cm mean | Hardwood-Evergreen                                                            |
| Schwendenmann and Veldkamp (2005)<br>Silva et al. (2005)   | OK. USA              | Reported                                                           | 11a<br>50   | na<br>27.5  | 22.5        | 0.16           | T        | 4                | 4          | >20          | 20, 40, 75, 150, 250 350 cm mean<br>50cm             | Hardwood-Evergreen<br>Grassland                                               |
| Silva et al. (2005)<br>Silva et al. (2005)                 | OK, USA<br>OK, USA   | Reported                                                           | 45          | 35.5        | 17.5        | 19.35          | T        | 2                | 2          | 23           | 50cm                                                 | Hardwood-Deciduous                                                            |
| Silva et al. (2005)                                        | OK, USA              | Reported                                                           | 80          | 10          | 10          | 45.45          | Т        | 2                | 2          | 23           | 50cm                                                 | Grassland                                                                     |
| Silva et al. (2005)                                        | OK, USA              | Reported                                                           | 87.5        | 7.5         | 5           | 24.12          | т        | 2                | 2          | 23           | 50cm                                                 | Hardwood-Deciduous                                                            |
| Strahm et al. (2005)*                                      | WA, USA              | Author contacted                                                   | 16.42       | 44.72       | 38.86       | 33.16          | Т        | 1                | 4          | >10          | 100 cm                                               | Conifer                                                                       |
| Zak et al. (2004)                                          | MI, USA              | Author contacted                                                   | 84          | 13          | 3           | 8.62           | Т        | 4                | 3          | 22           | 75cm                                                 | Hardwood-Deciduous                                                            |
|                                                            |                      |                                                                    |             |             |             |                |          |                  |            |              |                                                      |                                                                               |

Appendix 1. Sampling method abbreviations: T = tensions lysimeters, O = Zero tension lysimeters and C = centrifuge. Texture Determination Abbreviation: WSS = Web Soil Survey (see literature cited)

na = not available

\* = report used in young vs. old forest paired comparison; Hope (2009); Murphy et al. (2006), Neill et al. (2006) and Strahm et al. (2005) paired sites were harvested immediately prior to data collection and thus not included in clay-CV regression.

† = report used in paired N addition comparison

#### DON Data

| Castellano Kaye Apper                 | adiu                   |                               |              |        |        |        |                 | # lysimeters /   |            | approximate  |                                 |                                   |
|---------------------------------------|------------------------|-------------------------------|--------------|--------|--------|--------|-----------------|------------------|------------|--------------|---------------------------------|-----------------------------------|
| Source Source                         | Location               | Texture Determination         | %Sand        | % Silt | % Clay | CV (%) | Sampling Method | Replicate/ Depth | Replicates | sample times | lysimeter depth                 | dominant vegetation               |
| Adamson et al. (1998)                 | United Kingdom         | Mean Text. Class (Peat)       | Peat         | Peat   | Peat   | 5.46   | Т               | 1                | 6          | 26           | 10 & 50 cm mean                 | Heath                             |
| Asano et al. (2006)                   | OR, USA                | WSS                           | 27.65        | 52.55  | 19.80  | 58.76  | Т               | 1                | 19         | 15           | 50cm                            | Conifer                           |
| Borken et al. (2004)                  | Solling, Germany       | Borken & Beese (2002)         | 27           | 54     | 19     | 32.35  | Т               | 4                | 3          | 10           | 10cm                            | Hardwood-Deciduous                |
| Borken et al. (2004)                  | Solling, Germany       | Borken & Beese (2002)         | 14           | 58     | 28     | 24.72  | Т               | 4                | 3          | 6            | 10cm                            | Conifer                           |
| Borken et al. (2004)                  | Solling, Germany       | Borken & Beese (2002)         | 39           | 46     | 15     | 54.7   | Т               | 4                | 3          | 12           | 10cm                            | Conifer                           |
| Borken et al. (2004)                  | Unterlüß. Germany      | Borken & Beese (2002)         | 77           | 16     | 7      | 24.73  | Т               | 4                | 3          | 8            | 10cm                            | Hardwood-Deciduous                |
| Borken et al. (2004)                  | Unterlüß, Germany      | Borken & Beese (2002)         | 74           | 23     | 3      | 34.1   | Т               | 4                | 3          | 8            | 10cm                            | Conifer                           |
| Borken et al. (2004)                  | Unterlüß. Germany      | Borken & Beese (2002)         | 81           | 16     | 3      | 20.18  | Т               | 4                | 3          | 8            | 10cm                            | Conifer                           |
| Brenner et al. (2006)                 | AK, USA                | WSS                           | 15.05        | 77.00  | 8.00   | 19.50  | Т               | 5,4              | 3          | 20           | 13 & 40 cm mean                 | Hardwood-Deciduous                |
| Brenner et al. (2006)                 | AK, USA                | WSS                           | 15.05        | 77.00  | 8.00   | 14.63  | Т               | 5,4              | 3          | 20           | 14 & 40 cm mean                 | Conifer                           |
| Currie et al. (1996)†                 | MA, USA                | WSS/ Author Contacted         | 68.00        | 16.70  | 12.00  | 80.27  | Т               | 5                | 1          | 14           | 60cm                            | Conifer                           |
| Currie et al. (1996)†                 | MA, USA                | WSS/ Author Contacted         | 68.00        | 16.70  | 12.00  | 81.63  | Т               | 5                | 1          | 14           | 60cm                            | Hardwood-Deciduous                |
| Dijkstra et al. (2007)                | MN, USA                | Author contacted              | 94.00        | 2.50   | 3.50   | 57.4   | Т               | 1                | 12         | 20           | 60cm                            | Grassland                         |
| Dittman et al. (2007)                 | NY, USA                | Mean Text. Class (Sandy Loam) | 65.00        | 25.00  | 10.00  | 49.98  | 0               | 1                | 2          | 145          | 22.5cm, 44.5cm mean             | Conifer                           |
| Dittman et al. (2007)                 | NY, USA                | Mean Text. Class (Sandy Loam) | 65.00        | 25.00  | 10.00  | 57.88  | 0               | 1                | 3          | 145          | 22.5cm, 44.5cm mean             | Hardwood-Deciduous                |
| Dittman et al. (2007)                 | NY, USA                | Mean Text. Class (Sandy Loam) | 65.00        | 25.00  | 10.00  | 65.72  | 0               | 1                | 3          | 145          | 22.5cm, 44.5cm mean             | Hardwood-Deciduous                |
| Fang et al. (2008)*                   | Zhaoqing, China        | Author contacted              | 36.80        | 29.40  | 33.80  | 53.29  | 0               | 2                | 3          | 24           | 20cm                            | Hardwood-Evergreen (young growth) |
| Fang et al. (2008)*                   | Zhaoqing, China        | Author contacted              | 22.10        | 34.50  | 43.40  | 39.97  | 0               | 2                | 3          | 24           | 20cm                            | Hardwood-Evergreen (old growth)   |
| Fisk et al. (2002)*                   | MI, USA                | Reported                      | 63.00        | 32.00  | 4.00   | 37.44  | Т               | 8                | 3          | 30           | 30                              | Hardwood-Deciduous (old growth)   |
| Fisk et al. (2002)*                   | MI, USA                | Reported                      | 70.00        | 25.00  | 5.00   | 48.82  | Т               | 8                | 3          | 30           | 30                              | Hardwood-Deciduous (young growth) |
| Hagedorn et al. (2001)†               | Switzerland            | Reported                      | 5.00         | 46.00  | 49.00  | 27.50  | Т               | 1                | 5          | >20          | 5cm                             | Conifer                           |
| Huygens et al. (2008)                 | Chile                  | Huygens et al. (2007)         | 71.00        | 23.00  | 6.00   | 43.32  | Т               | 1                | 4          | na           | 10, 50, 100 cm mean             | Hardwood-Evergreen                |
| Jones and Willett (2006)              | United Kingdom         | Author contacted              | 19.00        | 69.00  | 12.00  | 85.40  | С               | 1                | 6          | na           | A horizon                       | Hardwood-Deciduous                |
| Jones and Willett (2006)              | United Kingdom         | Author contacted              | 44.00        | 36.00  | 20.00  | 38.10  | С               | 1                | 6          | na           | A horizon                       | Hardwood-Deciduous                |
| Kaiser and Guggenberger (2005)        | Germany                | Reported                      | na           | na     | 17.00  | 44.06  | O&T Mean        | 8                | 3          | 2            | 25-30cm & 90cm mean             | Hardwood-Deciduous                |
| Lilienfein et al. (2004)              | CA, USA                | Dickson & Crocker (1953)      | 40.30        | 57.59  | 2.11   | 43.77  | Т               | 1                | 5          | 8            | mean 10cm, 40, 150 cm           | Conifer                           |
| Lilienfein et al. (2004)              | CA, USA                | Dickson & Crocker (1953)      | 42.10        | 55.76  | 2.14   | 38.58  | Т               | 1                | 6          | 8            | mean 10cm, 40, 150 cm           | Conifer                           |
| Lilienfein et al. (2004)              | CA, USA                | Dickson & Crocker (1953)      | 45.70        | 50.36  | 3.94   | 41.62  | Т               | 1                | 5          | 8            | mean 16cm, 40, 150 cm           | Conifer                           |
| Lilienfein et al. (2004)              | CA, USA                | Dickson & Crocker (1953)      | 44.60        | 53.40  | 2.00   | 35.23  | Т               | 1                | 5          | 8            | mean 20cm, 40, 150 cm           | Conifer                           |
| Mobley, Richter et al. (Unpublished)  | SC, USA                | Richter et al. (1994)         | 67.60        | 17.00  | 15.40  | 37.33  | 0               |                  | 12         | 19           | 7.5cm                           | Hardwood-Deciduous                |
| Park and Matzner (2003)               | Germany                | Eusterhues et al. (2005)      | na           | na     | 9.40   | 8.33   | Т               | 1                | 3          | 46           | 20cm                            | Hardwood-Deciduous                |
| Qualls and Richardson (2003)          | FL, USA                | Mean Text. Class (Peat)       | Peat         | Peat   | Peat   | 29.50  | 0               | 1                | >10        | 3            | 12.5 & 60 mean                  | Grassland                         |
| Schroth et al. (2002)                 | Brazil                 | Reported                      | na           | na     | 80.00  | 35.58  | Т               | 1                | 6          | 13           | 10cm & 60cm mean                | Hardwood-Evergreen                |
| Schrumpf et al. (2006)*               | Tanzania               | Author Contacted              | 16.00        | 19.88  | 64.10  | 37.70  | Т               | 3                | 3          | >50          | 15, 30, 100 mean                | Hardwood-Evergreen                |
| Schwendenmann and Veldkamp (2005)     | Costa Rica             | Reported                      | na           | na     | 71.38  | 28.61  | Т               | 4                | 4          | >20          | 20, 40, 75, 150, 250 350 cm mea | n Hardwood-Evergreen              |
| Strahm et al. (2005)*                 | WA, USA                | Author contacted              | 16.42        | 44.72  | 38.86  | 27.28  | Т               | 1                | 4          | >10          | 100 cm                          | Conifer                           |
| Zak et al. (2004)                     | MI, USA                | Author contacted              | 84.00        | 13.00  | 3.00   | 9.30   | Т               | 4                | 3          | 22           | 75cm                            | Hardwood-Deciduous                |
|                                       |                        |                               |              |        |        |        |                 |                  |            |              |                                 |                                   |
|                                       |                        |                               |              |        |        |        |                 |                  |            |              |                                 |                                   |
| Appendix 1. Sampling method abbrevia  |                        |                               | C = centrifu | ge.    |        |        |                 |                  | ~(         | )            |                                 |                                   |
| Texture Determination Abbraviation: W | CC - Wah Coil Curvey ( | see literature eited)         |              |        |        |        |                 |                  |            |              |                                 |                                   |

Texture Determination Abbreviation: WSS = Web Soil Survey (see literature cited)

na = not available

na = not available \* = report used in young vs. old forest paired comparison; Schrumpf et al. (2006) and Strahm et al. (2005) paired sites were harvested immediately prior to data collection and thus not included in clav-CV regression. † = report used in paired N addition comparison

and thus not included inclusion

### Ks Data

| Source                        | Location    | Clay Determination                     | %Sand | % Silt | % Clay | CV (%) | Sampling Method    | N    | Sampling Location |
|-------------------------------|-------------|----------------------------------------|-------|--------|--------|--------|--------------------|------|-------------------|
| Buczko et al. (2006)          | Germany     | Reported                               | 93.70 | 3.10   | 3.20   | 13.39  | Ring Infiltrometer | 30   | Field             |
| Buczko et al. (2006)          | Germany     | Reported                               | 92.80 | 3.40   | 3.80   | 7.96   | Ring Infiltrometer | 33   | Field             |
| Buczko et al. (2006)          | Germany     | Reported                               | 91.70 | 5.40   | 2.90   | 9.85   | Ring Infiltrometer | 33   | Field             |
| Buczko et al. (2006)          | Germany     | Reported                               | 89.00 | 6.20   | 4.80   | 11.33  | Ring Infiltrometer | 28   | Field             |
| Grace et al. (2006)           | NC, USA     | Mean Texture Class (Clay loam)         | 32.50 | 34.25  | 33.45  | 42.86  | Constant head      | 11   | Lab               |
| Jansson and Johansson (1998)  | Switzerland | Reported                               | 17.70 | 70.40  | 8.80   | 100.85 | Permeater          | 0-5  | Lab               |
| Johnson et al. (2006)         | Brazil      | Author Contacted                       | na    | na     | 32.40  | 41.32  | Infiltrometer      | 4    | Field             |
| Johnson et al. (2006)         | Brazil      | Author Contacted                       | na    | na     | 36.40  | 56.51  | Infiltrometer      | 4    | Field             |
| Julia et al. (2004)           | Spain       | Reported                               | 20.50 | 31.10  | 20.50  | 73.17  | Various            | 120  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 5.00  | 7.00   | 5.00   | 101.42 | Various            | 38   | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 27.00 | 33.20  | 27.00  | 41.67  | Various            | 472  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 19.70 | 30.30  | 19.70  | 94.34  | Various            | 200  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 24.70 | 26.80  | 24.70  | 51.55  | Various            | 163  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 25.20 | 26.20  | 25.20  | 71.94  | Various            | 46   | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 15.50 | 27.70  | 15.50  | 96.15  | Various            | 182  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 20.80 | 32.00  | 20.80  | 79.37  | Various            | 141  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 17.70 | 23.90  | 17.70  | 104.53 | Various            | 30   | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 38.20 | 25.70  | 38.20  | 66.67  | Various            | 98   | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 35.70 | 21.50  | 35.70  | 58.82  | Various            | 288  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 25.00 | 21.10  | 25.00  | 47.62  | Various            | 78   | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 24.20 | 21.60  | 24.20  | 63.03  | Various            | 408  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 15.40 | 26.60  | 15.40  | 111.11 | Various            | 145  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 25.00 | 35.60  | 25.00  | 31.06  | Various            | 225  | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 18.10 | 30.90  | 18.10  | 69.12  | Various            | 39   | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 19.70 | 28.10  | 19.70  | 98.43  | Various            | 79   | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 25.40 | 29.20  | 25.40  | 47.85  | Various            | 49   | Various           |
| Julia et al. (2004)           | Spain       | Reported                               | 28.50 | 37.40  | 28.50  | 16.13  | Various            | 37   | Various           |
| Li et al. (2007)              | China       | Mean Sand                              | 92.50 | 7.50   | 5.00   | 35.57  | Permeater          | 4    | Field             |
| Li et al. (2007)              | China       | Mean Texture Class (Loamy Sand)        | 80.00 | 15.00  | 7.50   | 5.48   | Permeater          | 3    | Field             |
| Li et al. (2007)              | China       | Mean Texture Class (Sandy Loam)        | 65.00 | 25.00  | 10.00  | 113.95 | Permeater          | 12   | Field             |
| Li et al. (2007)              | China       | Mean Texture Class (Silty Loam)        | 25.00 | 67.50  | 13.75  | 78.58  | Permeater          | 13   | Field             |
| Li et al. (2007)              | China       | Mean Texture Class (Silty Clay Loam)   | 10.00 | 66.25  | 36.25  | 50.58  | Permeater          | 3    | Field             |
| Malmer (1996)                 | Malaysia    | Clay Mean                              | 22.50 | 30.00  | 70.00  | 70.23  | Infiltrometer      | 10   | Field             |
| Malmer (1996)                 | Malaysia    | Sand Mean                              | 92.50 | 7.50   | 5.00   | 33.33  | Infiltrometer      | 10   | Field             |
| Neirynck et al. (2000)        | Belgium     | Reported                               | 10.50 | 74.00  | 15.50  | 72.99  | Not available      | 5-10 | Lab               |
| Perkins et al. 2007           | GA, USA     | Mean Texture Class (Loamy sand)        | 80.00 | 15.00  | 7.50   | 78.00  | Ring Infiltrometer | 24   | Field             |
| Ramos et al. (2007)           | Spain       | Reported                               | 70.40 | 23.10  | 6.50   | 33.00  | Infiltrometer      | 6    | Field             |
| Schack-Kirchner et al. (2007) | Brazil      | Reported                               | 7.00  | 22.00  | 71.00  | 40.89  | Falling head       | 6    | Lab               |
| Sheridan et al. (2007)        | Australia   | Mean Texture Class (Sandy clay & Clay) | 30.00 | 24.00  | 30.00  | 66.89  | Ring Infiltrometer | 27   | Field             |
| Xu et al. (2002)              | SC, USA     | Author Contacted                       | 65.00 | 25.00  | 10.00  | 102.53 | Not available      | 6    | Lab               |
| Young et al. (2004)           | NV, USA     | Reported                               | 95.00 | 3.00   | 2.00   | 28.57  | Infiltrometer      | na   | Field             |
| Young et al. (2004)           | NV, USA     | Reported                               | 85.00 | 12.00  | 3.00   | 78.75  | Infiltrometer      | na   | Field             |
| Young et al. (2004)           | NV, USA     | Reported                               | 70.00 | 24.00  | 6.00   | 13.64  | Infiltrometer      | na   | Field             |
| Young et al. (2004)           | NV, USA     | Reported                               | 47.00 | 25.00  | 28.00  | 42.84  | Infiltrometer      | na   | Field             |
| Young et al. (2004)           | NV, USA     | Reported                               | 53.00 | 22.00  | 25.00  | 41.67  | Infiltrometer      | na   | Field             |
| Ziegler et al. (2006)         | Malaysia    | Reported                               | 34.00 | 27.50  | 38.50  | 70.00  | Amoozemeter        | 10   | Field             |
|                               | -           |                                        |       |        |        |        |                    |      |                   |

na = not available