Baseline Characterization of a Deteriorating Wetland Community in the

Deal Island Impoundment, Lower Eastern Shore, Maryland

L. Carroll, K. Keller, C. Ervin, and P. Delgado

 Spartina alterniflora, S. patens,

METHODS:

Sampled water quality, emergent vegetation, and submerged aquatic vegetation (SAV) within two ponds: Main Pond and Snag Pond

Water Quality:

- Physical Parameters - measured at all water quality plots using a YSI Meter - Dissolved oxygen (mg/L)
- Temperature $\left({ }^{\circ} \mathrm{C}\right.$)

Conductivity (mS)

- Specific conductance (mS)
- Salinity (ppt)
$\frac{\text { Chemical Parameters }}{\text { - TSS - TVS }}$ - measured only at two of the water quality plots - TSS - TVS (mg/L)
- Chlorophyll a

Total nitrogen (mg/L)

- NH4, NO2, NO3 (mg/L)
mergent Vegetation:
-Five transects per pond; 100 m in length; plots at 20 m increments Vegetation and substrate were characterized using the Point Intercept Method (Roman et al. 2001)
Recorded species stem density and maximum heights

SAV:
Five transects per pond; 50 m in length; plots at 10 m increments
Used a $0.25 \mathrm{~m}^{2}$ PVC quadrant and Aqua Scope Viewing Scope to sample SAV Information gathered.

- Total percent cover (Paine 1981) Species stem density Species maximum heigh Presence of epiphytes and sediments on leaves

RESULTS:
Water Quality:

	Main Pond		Smag Pond	
Parameter	91922008	102323008	103	${ }^{102323008}$
Depth (m)	${ }_{\substack{0.3 \\+0.0}}^{\text {a }}$	${ }_{\substack{0.4 \\ \text { a. } \\ 0.0}}$	${ }_{\substack{0.4 \\+0.0}}^{\text {and }}$	${ }_{\substack{0.4 \\+0.0}}$
Ssalitit (ppl)	$\underset{\substack{18.5 \\ 10.1}}{ }$	${ }_{\substack{20.63 \\ \text { to.a }}}$	$\underset{\substack{19.0 \\+0.05}}{ }$	${ }_{\substack{24.28 \\ \text { ene }}}^{2}$
Temperature (C)	$\substack{21.5 \\ \hline 0.36}$	(11.7	18.7 +0.5	
Disaloce OXygen (mgh	+ $\begin{array}{r}7.8 \\ +0.4\end{array}$	$\underset{\substack{8.8 \\+0.1}}{\text { f. }}$	$\begin{array}{r}7.7 \\ +0.2 \\ \hline\end{array}$	${ }_{\substack{8.8 \\+0.2}}^{\text {d, }}$
${ }^{\text {ph }}$	${ }_{\substack{8.2 \\ 40.03}}^{\text {t. }}$	$\underset{\substack{7.8 \\ \text { f0.03 }}}{\text { c. }}$		${ }_{\substack{6.9 \\ 40.1}}^{\text {for }}$

	Main Pond		Snag Pond	
Parameter	91920008	102322008	10382008	102320008
$\mathrm{Po}_{4}(\mathrm{mg}$ L $)$	$\underbrace{}_{\substack{0.00107 \\ \pm 0.0040}}$	${ }^{\substack{0.0041 \\+0.0007}}$	${ }_{\substack{0.0036 \\ \text { f0.005 }}}^{0.000}$	$\underbrace{\text { and }}_{\substack{0.0027 \\ \pm 0.0001}}$
Nos, math)	(0.0129	(0.0067	(0.0.088	
$\mathrm{NO}_{\text {(}}^{\text {mag }}$ L)	(0.0098	${ }_{\text {a }}^{\substack{0.0009 \\ \\ \pm 0.0001}}$	(0.0033	${ }_{\substack{0.0028 \\ \pm 0.0002}}^{\text {and }}$
$\mathrm{NH}_{\text {(mag L }}$	(0.0409	(0.0.17	(0.0.774	(1.274
TP (mest)	$\begin{gathered} 0.1003 \\ \pm 0.0063 \end{gathered}$	$\underbrace{\substack{\text { a }}}_{\substack{0.0 .074 \\+0.041}}$	$\begin{gathered} \mathbf{0 . 0 8 6 5} \\ \pm 0.0098 \end{gathered}$	$\underbrace{}_{\substack{0.0311 \\ \pm 0.0076}}$
TN(mgl)	$\underset{\substack{2.2 \\+0.09}}{\text { a }}$	$\underset{\substack{1.8 \\ \text { f0.04 }}}{\text { a }}$	$\underset{\substack{2.0 \\+0.05}}{ }$	coile
Chat (mel)	¢	$\underset{\substack{21.78 \\ \pm 1.78}}{ }$	$\underset{\substack{9.42 \\+8.32}}{ }$	
TSS (mgL)	(16.5	${ }_{\substack{137.1 \\ \text { t31.12 }}}^{\text {din }}$	$\xrightarrow[\substack{34.3 \\ \text { +104.08 }}]{ }$	

- Salinity and temperature can change rapidly in short periods of time (result of shallow environment)
- Good dissolved oxygen conditions observed
- High Chlorophyll a concentrations could correlate with the high NH_{4} concentrations in Snag pond

SAV:

Dominance of Ruppia maritima (Widgeon Grass); 0-35 ppt salinity tolerance
Current salinity values do not seem to be a limiting factor for SAV
Need more data on SAV to better determine temporal and spatial species patterns

Emergent Vegetation:

- Spartina alterniflora dominated in Main Pond; S. alterniflora not present in Snag Pond
- Distichlis spicata and S. patens dominated in Snag Pond
- Larger percentage of standing water in Snag Pond could be an indicator that the marsh is breaking up

NEXT STEPS:

- Baseline data - will continue monitoring
- Will modify some aspects of methodology
- Retrieve water quality samples 30 cm from bottom instead of from - surface
 Establish depth four times during growing season

Potential sediment analysis correlations with parameters being measured

REFERENCES:

Paine, David P. (1981) Aerial Photography and Image Interpretation for Resource Management. John Wiley \& Sons, Inc., New York City, NY. 571 pp.
Roman, C.T., M. James-Pirri, and J.F. Heltshe (2001) Monitoring Salt Marsh Vegetation. USGS Patuxent Wildlife Research Center

ACKNOWLEDGEMENTS:

Bill McInturff, Bill Harvey, Yuka Tasumi, Hutch Walbridge, and Beth Ebersole

