Task Force to Study the Impact of Ocean Acidification on State Waters September 10, 2014 Meeting Minutes

Task Force Members

Present:

Bill Ferguson, MD Senate
Eric Schwaab, National Aquarium in Baltimore
Bruce Michael, MD Dept. Natural Resources
Lee Currey, MD Dept. of the Environment
Tom Miller, UMCES Chesapeake Biological Laboratory

Absent:

Eric Luedke, MD Delegate – via phone Tal Petty, Hollywood Oyster Co. Robert T. Brown, Maryland Waterman's Association – via phone Doug Myers, Chesapeake Bay Foundation

Staff:

Marek Topolski, MD Dept. Natural Resources

Guest Presenter

Whitman Miller, Smithsonian Environmental Research Center – see Appendix A Denise Breitburg, Smithsonian Environmental Research Center – see Appendix B

Audience

Matt Stover, MD Dept. of the Environment Mark Trice, MD Dept. Natural Resources Ryan Ono, Ocean Conservancy Zoe Johnson, MD Dept. Natural Resources

Logistics

- Meeting schedule: 2nd Wednesday of each month
- OA Task Force information is available at http://mddnr.chesapeakebay.net/mdoatf/index.cfm

Timeline

• Meeting 3: October 15th, 2014 from 9:00 - 12:00

Discussion (↑ - Increase, ↓ - Decrease, ↑ - Fluctuation)

- Describe the risks of OA in Chesapeake Bay what strategies can minimize the risks
 - o What are the risks to mitigation projects in place, under way, or needed?
 - Are strategies already in place that help address the risks are they being promoted?
 - o Alliance for Coastal Technologies Workshop Proceedings Chesapeake Bay OA workshop
 - Science Assessment of Chesapeake Bay Acidification: Toward a Research and Monitoring Strategy report (ACT document)
 - 13 recommendations pp. 13-14 Task Force should review
 - Workshop identified knowledge gaps and state of the science
 - o Next step is for stakeholders to help answer questions about risk
 - o Consider a workshop (STAC) to develop a strategy to address unknowns and challenges
 - From a food web and ecosystem services perspective

- Develop baseline measures to fill data gaps
- Assess the changes and impacts in the Chesapeake Bay over time
- o Review west coast and Maine actions to incorporate OA affects into management strategies
- Maryland has opportunity to be at forefront of coastal OA research, planning, and management
 - Identify funding/resources to support the science (state, federal) grants from NOAA OA Task Force
 - There is a growing realization that open ocean and coastal OA are different
 - Coastal OA is more complex than just oceanographic processes
 - NOAA OA Task Force focus has been open ocean OA
 - Are they willing to fund coastal OA research? i.e. v.3 (see August minutes)
 - o Maryland's primary monitoring assets are in Chesapeake Bay and coastal bays.
 - There are a lot of pH data available (recognizing that pCO₂ is a better measure than pH)
 - Range of pH data may ameliorate, to some extent, pH probe calibration error
 - o Intrusion of deep Chesapeake Bay water into shallow water is analogous to west coast upwelling
 - Water is low in DO but pH is not known
 - Presumably low based on the research of DO/pH relationship
 - o Coastal Bays may be a good contrast to Chesapeake Bay
 - Water is more closely oceanic highly buffered OA effects may be less extreme
 - o Restoring America's Estuaries Summit in November Emphasis on estuarine effects of OA
- Discussion about the Task Force's report
 - o Should people's attention be focused on risks of OA or responses to OA?
 - What are the critical things to focus on?
 - How eutrophication is already affecting the ecosystem
 - Continue nutrient reduction to reduce CO₂ input from respiration
 - Where and under what conditions we might need new, different, or more stringent nutrient reduction strategies
 - Identify where existing strategies like DO criteria are not being protected
 - Implement existing strategies where needed but not implemented
 - Adjust regulations that are restrictive to shallow water restoration projects
 - Navigation regulations are restrictive to shallow water (~1m) oyster
 - Continued support for SAV restoration
 - SAV beds/meadows can cause significant CO₂ drawdown during day
 - Leverage the advantages of duel/muti-benefit/target restoration strategies
 - o Implementation of recommendations should be through the legislative process
- Going forward Task Force actions
 - Agenda items for meeting 3
 - Focus on other state examples
 - Obtain industry perspectives and issues
 - Develop report framework/outline
 - Report focus is estuarine waters, but will also acknowledge state ocean waters
 - Action items
 - Information is needed about aquaculture and restoration efforts
 - Contact Maine's Task Force to get their perspectives Bruce and Eric
 - Bring the Oyster Recovery Partnership (ORP) into the stakeholder discussion

- Contact Tom O'Connell and Mike Naylor (Fisheries) to identify an appropriate ORP contact Bruce
- Follow up with ORP Bruce and Eric
- Task Force should reach out East Coast Shellfish Growers Association (http://www.ecsga.org/index.htm) – it is a secondary industry resource
 - Headed by Bob Rheault

Appendix A

Presentation: Whitman Miller, Smithsonian Environmental Research Center (SERC) Topic: Carbonate chemistry and monitoring approaches for Chesapeake Bay

- CO₂ distribution: 50% in atmosphere, 25% in ocean, 25% in plants and terrestrial soil
- $CO_2 + H_2O \leftrightarrow$ carbonic acid; reaction direction affected by pH
 - o Release of hydrogen ion (H⁺) from carbonic acid leads to formation of carbonate ion
 - o Carbonate ion is necessary for organisms that have/make shells of calcium carbonate
 - Calcium + carbonate ion = calcium carbonate
- \uparrow CO₂ added to water, the more acidic the water becomes (CO₂ acts like an acid)
 - o The more acidic the water, the fewer carbonate ions available to organisms
 - $\uparrow CO_2 = \downarrow pH = \uparrow H^+ = \downarrow carbonate ion$
- Surface ocean water is supersaturated with calcium carbonate
 - o Saturation horizon = the depth/temperature point where water becomes undersaturated
 - Calcium carbonate saturation horizon = water is not saturated with calcium carbonate
 - Calcium carbonate shells dissolve below this saturation horizon
- Is OA causing calcium carbonate saturation horizon to move closer to the ocean surface?
 - o Is the available water column space for organisms being reducing (squished)?
- What role do coasts have in controlling ocean carbon?
 - o NOAA perspective: This is an oceanographic question
 - NOAA buoys monitor the open ocean to detect OA parameter changes
 - o Whitman's perspective: This is an estuarine question
 - Coastal chemistry affects biology and biology affects chemistry?
 - Interactions vary by ecological scale and dynamics where you live
- Estuary characteristics are not constant relative to open ocean
 - o Shallow, lower salinity, less buffered against changes to pH as CO₂ is added
 - o Geology, riverine chemistry, terrestrial inputs, and sediments are important
 - o The calcium carbonate saturation horizon varies spatially (not simply vertical)
 - o Many more factors that influence carbonate chemistry than in open ocean

Experiments:

- CO₂ effects on oyster larvae incubated at different CO₂ concentrations (in the water)
 - o Pre- & post industrial revolution and 100 year projection (yr100) of CO₂ concentration
 - Pre-industrial revolution oysters were larger
 - yr100 oyster had regular growth pattern, but daily growth was slower
 - Oyster settlement is dictated by size of larvae not age
 - Slow growth oyster is in water column longer and exposed to more predation
- SAV beds were enriched with CO₂
 - o SAV have ↑ growth when water is CO₂ enriched
 - o Faster growing SAV have lower levels of "defensive" secondary carbon compounds
 - These compounds protect against predation and disease
 - Herbivorous fishes have preference for these fast growing SAV
- Analysis of pCO₂ (carbonate) monitoring data
 - o Data Types
 - real time chemistry (continuous data)
 - pCO_2
 - pH
 - wet chemistry (discrete samples)
 - DIC: dissolved inorganic carbon (carbonate, bicarbonate, and dissolved CO₂)

- T Alk: total alkalinity (buffering capacity)
- T Alk and pCO₂ data are used to calculate pH and DIC
- o Rhode River: SERC pier vs. Marsh 1 km apart
 - SERC pier
 - Day time CO₂ draw down presumably due to photosynthesis
 - Night time CO₂ increase presumably due to respiration w/o photosynthesis
 - Daily ↑ of CO₂ and pH
 - \downarrow CO₂ corresponds to \uparrow pH inverse relationship
 - pH at the dock varies between 7.5 & 8.0 f airly constant
 - Daily variability of pCO₂ \geq range of ocean pCO₂ levels by up to a factor of ten
 - pCO₂ can be below or above ocean's range for extended periods of time
 - Seasonal pCO₂ patterns: ↓ cold months and ↑ in warm months
 - Photosynthesis and respiration response rates affected by temperature
 - Temperature driven photosynthesis rates cause daily $CO_2 \updownarrow$ in water
 - Marsh
 - Daily CO₂ \$\(\psi\) from marsh driven by tidal cycle export of decomposing carbon
 - High tide inundation of marsh picks up CO₂ from decomposition
 - CO₂ is then washed out during low tide
 - pH has greater \(\pmax \) ranging between 6.5 \& 7.5 water becomes acidic
 - Positive pH correlation with tide (lower water = lower pH)
 - Marsh biogeochemical processes produce CO₂ and T Alk (buffering capacity

 resistance to change)
 - Both of these are washed out at low tide
 - Oyster restoration in Rhode River should not be done at mouth of tidal creeks (where marshes are)
 - Heterogeneity of water column CO₂ concentration between sites (1 km apart)
 - Water column CO₂ at SERC pier is temperature driven
 - Water column CO₂ at marsh is tidal driven
 - There are distinct, spatially different habitats between sites
- Can marsh characteristics be used to predict/estimate CO₂ and T Alk output to riverine system?
 - o Not yet, but that should be possible in the future
 - o A marsh is a reflection of the local land/sea interface
 - Different types of shoreline habitats have different land/sea interactions
 - They should have different chemical footprint/signature
 - Should be able to develop localized predictive models, at ecologically relevant scales, for different Chesapeake Bay and coastal habitat types
 - o More monitoring data is needed to develop predictive models of CO₂ and T Alk for various/specific habitats types
 - Current monitoring is robust 30 year baseline
 - Very little is known about Chesapeake Bay carbonate chemistry
 - Data is "noisy" requiring a lot of data collection with a lot of spatial coverage
 - Measuring pCO₂ and T Alk at existing water quality monitoring stations would give a better understanding of overall system interactions
 - First step add appropriate monitoring equipment to existing monitoring assets
 - Cost to add pCO₂ and T Alk monitoring equipment to existing assets?
 - Oceanographic monitoring device (underway system) is \$80,000 \$100,000
 - SERC device is ~\$7,500 plus lab costs, data handling etc.
 - Overall is \$10,000 \$15,000 per device

- Big picture concepts
 - o In ocean, when an algal bloom crashes the organics sink to the abyss and lost from system
 - Decomposition is decoupled from surface water
 - In ocean, the chemistry is driving the biology
 - In estuary, when an algal bloom crashes the organics sink a few meters and remain in system
 - o Chemistry of decomposition remains in system not decoupled from surface water
 - o In coastal systems the biology is driving the chemistry
 - o Simple air/water equilibrium model cannot describe coastal OA way too dynamic
 - Exchanges between sediment (benthos) and surface water are important
 - Benthos has reducing conditions sulfate reduction generates CO₂ and T Alk
 - Shallow systems have extensive muddy bottoms associated with seasonal benthic respiration, strong CO₂ inputs, and \(\psi pH \)
 - When algal bloom busts, CO₂ spikes and pH drops
 - How does nutrient enrichment affect the carbonate chemistry?
 - o Nutrient enrichment is not a direct cause of OA
 - Subsequent biogeochemical processes and reactions lead to OA
 - o Highly productive systems have year round photosynthesis
 - Can ↓ CO₂ below atmospheric concentration
 - \(\text{respiration is possibly driven by temperature} \)
 - Can ↑ pH for extended periods
 - Measure OA at ecologically relevant scales for organisms where they live
 - o Temporal variability (tidal, day/night, seasonal)
 - o Spatial heterogeneity; (land-sea interactions, benthic respiration & photosynthesis)
 - o How/when does the ↑ of water chemistry exceed the comfort range of organisms that evolved under the pre-OA conditions?
 - o How long are the exposure times faced by organisms?
 - What are the biological responses to prolonged exposure?
 - o What were oysters "doing" and dealing with during pre-industrial time?
 - o Capacity of oysters to handle current and future CO₂ ↑ is being studied
 - o Open water Bay buoys provide good data but not at relevant biological/ecological scale
 - Such as evaluating where to site oyster reef or SAV restoration projects
 - o Chesapeake Bay has extensive and diverse freshwater input
 - Extensive land/sea interactions e.g. extensive CO₂ input from tidal saltmarshes
 - These inputs affect habitat at local and regional scales
 - Strong diurnal, seasonal, and tidal patterns in pCO₂ and pH
 - Salinity gradient is important: ↑ salinity = ↑ buffering capacity = ↓ effect a molecule of CO₂ will have on pH
 - Need robust/affordable monitoring system leveraged with and expanding on existing monitoring infrastructure
 - o e.g. co-locate carbonate chemistry instruments with existing land-, buoy-, and vessel-based observing assets
 - Why study Chesapeake Bay?
 - o Extensive natural resources, ecosystem services, and commercial fisheries.
 - o Extensive scientific understanding of Chesapeake Bay but not carbonate chemistry
 - o Extensive research and monitoring activities and assets
 - Piggy-back equipment on existing observing networks e.g. pCO₂, alkalinity, total inorganic carbon

o see Workshop Proceedings: Science Assessment of Chesapeake Bay Acidification: Toward a Research and Monitoring Strategy

Discussion:

- \(\psi\) buffering capacity in freshwater, urbanized waters
 - o Have wild pH swings (~3 units) in a few hours in response to flashy and rapid runoff
 - Example of why storm water control is so important
 - Biological/ecological implications of such rapid stress changes are not known
- Monitoring assets are funded through a state/federal partnership via the Chesapeake Bay Program
 - o Addition of monitoring equipment requires funds no state or federal approval needed
 - o Historical pH and T Alk data exists but, pH probes not designed for salinities of 1 − 20 ppt
 - Calibrate probes to a reference salinity for the site ionic composition
 - Coastal waters do not have a reference salinity because ionic composition is constantly in flux
 - o Deployed pH probes have biofouling problem uncertainty increases as fouling increases
 - o pCO₂ probe is not in contact with water so there is no fouling easier to measure
 - Allows for real time monitoring and conversion to pH
- Relative to sea level rise and climate change Is the marsh carbon flux good or bad for marshes?
 - o It is very specific to the marsh and the local biogeochemical conditions
 - o Marsh species composition affects the chemistry
 - o Changes in community composition will change the chemistry
 - o Relative size of marsh to river system will influence the effect of marsh's CO₂ and T Alk output (a ratio of marsh:river size effect has not been determined)
 - o Marshes and nearby waters are highly enriched with CO₂ from the marsh
 - o The marsh's response to sea level rise will inform the marshes effect on the land/sea interface
- What are the implications of CO₂ & pH patterns on aquaculture, fishing, restoration, etc.
 - o Aquaculture & hatcheries
 - Solutions can be engineered since it can be made as a closed system
 - Restoration
 - Include carbonate chemistry in the decision process for where to site restoration projects
 - Carbonate chemistry effect on restoration success/failure is not known
 - Long term carbonate chemistry will be influenced by indirect management efforts – nutrient reduction for example
 - A baseline for acceptable carbonate chemistry to site restoration is not known without which the long term implications are not known
 - Need to consider what the TMDL goals really are
 - Reduce nutrients by a certain amount, reduce algal blooms, raise O₂?
 - What do we want system to look like in 10, 15 years. Reach goal by 2025
 - o Monitoring networks
 - Continuous surface water monitoring would really help capture the carbonate dynamics
 - Caution about misinterpretation between surface water daytime only spot measurements with the continuous measurements
 - o MDE monitoring of shellfish harvesting areas additional platform for adding probes
 - o Aquaculture site monitoring

Appendix B

Presentation: Denise Breitburg, Smithsonian Environmental Research Center (SERC) Topic: Acidification in Chesapeake Bay: Biological effects in an ecosystem context

- Biological influence on OA within a complex estuarine system like Chesapeake Bay
 - o Develop predictable biological/OA interactions in Chesapeake Bay
 - Review existing OA effects in other systems worldwide
 - What challenges exist for prediction of OA effects?
 - How to manage for a Bay undergoing OA?
 - Examine biological feedback mechanisms and effect on OA
 - Are there co-occurring stessors for biology?
- Dissolved CO₂ sources: atmospheric and biological respiration
 - o In Chesapeake Bay, CO₂ from respiration is the dominant source
 - Algae, aerobic microbes, fish, invertebrates
 - What respiration is and what it does
 - \downarrow O₂ and \uparrow CO₂ at same time
 - hypoxia (↓ O₂) and acidification co-occurr in systems where respiration drives acidification
 - High nutrient loads stimulate ↑ biomass/production causing ↑ respiration
 - Potential result is ↑ acidification and ↑ hypoxia
 - Acidification and hypoxia must be considered together
 - Daily ↑ of dissolved oxygen (DO) and pH levels at monitoring sites
 - Strong positive correlation between DO and pH conditions
 - o Fairly accurate predictions: ↓ DO indicates ↓ pH
 - DO criteria have been established for Chesapeake Bay
 - Can DO criteria be used to set biologically relevant criteria for pH levels?
 - o Are DO criteria protective for pH effects since they co-occur?
 - o Comparisons with pristine SERC sites (central America) limited human impact
 - Tidal ponds in mangrove areas, limited circulation patterns, limited nutrient inputs
 - Sites have large daily ↑ of DO and pH
 - Strong correlation between DO and pH just like Chesapeake Bay
 - Some sites are virtually identical to Chesapeake Bay
 - \$\pm\$ in pH (low pH) is natural
 - o Challenge How much of Chesapeake Bay acidification is natural vs. human induced?
 - How much is caused by coastal human activities i.e. nutrient input?
 - Do changes to food web dynamics play a role in the acidification?
 - Management of the system should not try to undo the natural state of the estuary
 - What are the chemical feed backs in the system? not fully known.
 - Can respiration CO₂ be predicted if environmental parameters (biomass, temperature, DO, etc.) and atmospheric CO₂ are known?
 - Is there feedback in the system that ends up making the system worse?
 - Are there limits to the effect on the system if pH reaches a certain amount?
 - Biological and ecological responses to various conditions needs to be studied
 - Responses need to be known to predict the ecological effects from acidification.
 - Combined effect of atmospheric and nutrient derived acidification needs to be known
- Calcification by organisms is directly linked to carbonate chemistry pH
 - o pH affects growth and survival of organisms having calcium carbonate shells or skeletons

- Larval bivalves are particularly susceptible more than post-settlement stages
 - Shell's crystalline structure is affected at a ↓ pH
 - ↓ pH causes ↓ growth rate, ↓ calcification rates, delayed metamorphosis, and ↓ survival (↑ exposure to predators) in oyster and clam
 - Strongest effect on calcification rates were in ↓ salinity areas
 - o Problem these salinity areas are typically refuges from disease
 - o Acidification will become a factor when planning restoration strategies
- When oyster hemocytes (cells that fight disease) are continuously exposed to moderately low pH their activity is reduced by 40%
- ↑ acidification affects organisms other than shellfish
 - ↓ larval survival and growth of silversides ↑ vulnerability to predators
 - Summer flounder ↓ larval survival, ↓ energy reserve, metamorphose at ↓ size, and developmental abnormalities ↑ vulnerability to predators
 - What are the effects on energetics, hormone regulation, genetics, etc.?
 - † otolith size what is the effect on hearing and movement/orientation/balance?
 - Is there a behavioral effect? ↑ vulnerability to predators?
 - Fish seem "stupider" (coral reef studies) settle to reef at wrong time of day/night and wrong behavioral responses to predators - ↑ vulnerability to predators
 - Spiny dogfish and Atlantic shark are less able to detect squid possibly due to olefactory impairment
 - † in blue crab hardening time
- The more studies done, the greater the number of species and variety of effects found
- What are the effects to ecosystem services?
 - \downarrow oyster biofouling when \downarrow pH the shells are white/clean
 - o yster reef community abundance, diversity, and ecological processes
- Synergistic effects of hypoxia and acidification
 - ↓ growth rate of hard clam when exposed to both hypoxia and pH than either stressor alone
 - o Nutrient level can affect abundance and composition of food for some target species
 - Surf clam exposed to high prey concentration were not affected by acidification
 - The main effect on some organisms may be energetic cost
 - Prey abundance may partially compensate for lowered pH
 - o Some species will be more sensitive to acidification than others cause food web alteration
 - How will fisheries respond as target species are differentially affected by pH?
 - There will be decreased abundance and increased natural mortality
 - Will ↓ harvest mortality be an appropriate management response to compensate for ↓ biomass
 - o Few food web models compared to number of nutrient reduction models
- Multiple stressor effects and interactions
 - o Temperature stressor
 - Fundamental stressor
 - Chesapeake Bay water temperatures are rising
 - Low pH reduces tolerance to \(\) temperature and \(\) temperatures of red abalone larvae
 - o Spatial and temporal patterns
 - Are these stressors coinciding in space and/or occurring in temporal sequence?
 - Are they affecting the same or different physiological processes in species?
 - o What is happening when there are large day/night fluctuations of pH and DO

- Do cycling conditions have fundamentally different effects than constant conditions
 - Is there day or season compensation where conditions are less severe?
 - Is it just the pH minima that are driving the outcome?
- o Variability in the system has a huge effect on the energetic cost
- Organisms expend more energy to maintain appropriate physiology and behavior
 - o Experiment: Response of oyster to ↑ conditions (DO and pH) under a day/night cycle
 - Strong effect of hypoxia on prevalence of Dermo in oysters
 - ↓ Dermo presence when ↓ pH and ↑ DO (but observation not statistically significant)
 - Constant conditions reduces hemocyte activity
 - Cycling of conditions stimulates the immune response
 - What are implications of cycling conditions producing different biological responses than constant conditions
 - Different life stages are affected differently under cycling versus constant conditions
- Information needed to develop policy and management positions
 - o Identification of how much acidification is anthropogenic
 - o How do different sources of CO₂ combine in the system are they additive?
 - o Which biological experiments/measurements will be critical for decision making?
 - Policy and management decisions take into account that the system is dynamic not static
 - o Baseline information on biological responses to conditions is needed