LOWER SUSQUEHANNA RIVER WATERSHED ASSESSMENT QUARTERLY TEAM MEETING

MDE Aqua Conference Room, Baltimore, Maryland August 15, 2013

Meeting Agenda

Lead

10:00	Welcome and Introductions	All
10:05	Review of Action Items from Prior Meetings Funding Update Communication and Coordination Updates for Situational Awareness	O'Neill
10:20	Conowingo Re-licensing Update	Michael
LSRWA	Technical Analyses	
10:30	Update on Reservoir Sediment Management Strategies – Costs	O'Neill/Laczo
10:45	Watershed Sediment Management Strategies	Michael
10:55	Reservoir Transport	Langland
11:10	Sediment Management Modeling – one-time 3Mcy removal, 26Mcy rem- bathymetry), intermediate removal volume, bypassing	oval (1996
11:10	Sediment Transport Results Sediment Management Bypassing Model Summary	Scott
11:40	Water Quality Results	Cerco
12:10	What Does All This Mean? Stoplight Plots	Linker/Cerco
12:40	Future Modeling Scenarios	Compton
12:45	Meeting Wrap-Up Schedule Ahead Action Items/Summary Review of Team Calendar Next Meeting	O'Neill

Call-In Information: (877) 336-1839, access code = 6452843#, security code = 1234#

Expected Attendees:

MDE:	Herb Sachs; Tim Fox, Matt Rowe
MDNR:	Bruce Michael, Bob Sadzinski, Shawn Seaman
MGS:	Rich Ortt
SRBC:	John Balay, Andrew Gavin, Dave Ladd
USACE:	Anna Compton, Bob Blama, Chris Spaur, Claire O'Neill, Tom Laczo, Dan Bierly
ERDC:	Carl Cerco, Steve Scott
TNC:	Mark Bryer, Kathy Boomer
USEPA:	Gary Shenk, Lewis Linker
USGS:	Mike Langland, Joel Blomquist
NOAA:	Chris Boelke
Exelon:	Mary Helen Marsh, Kimberly Long, Gary LeMay
Lower Sus	quehanna Riverkeeper: Michael Helfrich

PA Agencies: Patricia Buckley, Raymond Zomok

Action Items from Previous Meetings:

- a. Michael Helfrich will forward info to Danielle Aloisio on Funkhauser Quarry. *Status:* Completed. No point of contact is available due to abandoned condition, but see response to "d" below.
- b. Claire will coordinate the next quarterly meeting for August 2013. Status: Complete. Meeting was scheduled for 15 August 2013.
- c. Anna will distribute NMFS agency letter discussing concerns over sediment bypassing management strategy to group and have it posted on website. *Status: Complete.*
- d. Bob Blama will call the Funkhauser Quarry to get more information on utilizing this as a placement option. *Status: Completed.* While no POC was provided, USACE did some preliminary calculations; volume is very limited (only 3 million cubic yards) and access to the quarry is a big concern. Spreadsheet for potential alternatives is being updated.
- e. Michael Helfrich will touch base with Jeff Cornwell (UMCES) to get his opinion on phosphorus bioavailability in sediments as it relates to the LSRWA study. *Status: Complete. Chris Spaur to update the group at the meeting.*
- f. The group will review the baseline and future conditions summary spreadsheet (Enclosure 3) and provide comments back to Anna Compton and Carl Cerco. *Status: Complete.* Anna Compton to update the group at the meeting.
- g. Lewis Linker and Carl Cerco will work with CBP partners to integrate the CBP's assessment procedure ("Stoplight plots") into the LSRWA key modeling scenarios to provide a means to communicate/explain impacts to Chesapeake Bay from the various full reservoir and storm scouring scenarios. *Status: Ongoing. Discussion item for August meeting.*
- h. The LSRWA agency group will develop a screening process for reservoir sediment management options that are worth developing further. *Status:* Ongoing. Once we get the modeling outputs, screening process can be further refined and lead to recommendations.
- i. The LSRWA agency group will direct any questions on sediment bypass tunneling to Kathy Boomer. *Status: Complete.*
- j. Kathy Boomer will write up a section on sediment bypass tunneling for the LSRWA report. *Status: Complete.*
- k. Exelon will review and provide comments on SRBC's write-up of altering reservoir operations as a sediment management strategy (Enclosure 9). Exelon will comment on the write-up to make sure dam operations are adequately covered. *Status: Ongoing.* SRBC to update at the meeting.

Ongoing Action Items from Previous Meetings:

A. The MDE FTP website will be utilized to share internal draft documents within the team; Matt will be the point of contact for this FTP site. *Status: Ongoing. Sharing of future documents will go through the MDE ftp website.*

B. Shawn will notify team when most recent Exelon study reports are released. *Status: Ongoing. Tom Sullivan, a contractor of Exelon noted that the Exelon has filed the license for Conowingo Dam with FERC.*

C. Anna will update PowerPoint slides after each quarterly meeting to be utilized by anyone on the team providing updates to other Chesapeake Bay groups. *Status: Ongoing*.

D. Anna will send out an update via the large email distribution list that started with the original Sediment Task Force (includes academia, general public, federal, non-government organization (NGO), and state and counties representatives) notifying the group of updates from the quarterly meeting. *Status: Ongoing*.

E. Matt will keep team informed on innovative re-use committee findings to potentially incorporate ideas/innovative techniques into LSRWA strategies. *Status: Ongoing.*

F. Anna will send out the spreadsheet tracking all stakeholder coordination to the group. Anyone making a presentation on LSRWA should let her know so the spreadsheet can be kept up to date; if any specific comments/concerns are raised, this should be noted as well. *Status: Ongoing*

G. Bruce Michael will work with CBP on potential "no-till" acres available in the watershed and evaluate impacts to sediment loads if all no-till acres were implemented in the watershed via modeling as well as develop costs. *Status: Ongoing.* Bruce Michael to update the group at the meeting.

H. Carl Cerco, Steve Scott and Lewis Linker will work together to determine where nutrients are scoured from in the reservoir (at what depths) and will conduct a sensitivity analysis looking at bioavailability of nutrients in various forms (species) by Berner activity class or other means). *Status*: *Ongoing*.

I. Modeling efforts cannot predict impacts to SAV from physical burial by sediments. These impacts should be considered and described by other means, perhaps qualitatively, by the LSRWA agency group. Status: Ongoing. Bruce Michael has provided the UMCES (Mike Kemp) SAV historical mapping and trends over last 10 years in Susquehanna Flats. This information will need to be incorporated into to the assessment to provide a qualitative discussion of impacts.

J. The LSRWA agency group needs to determine next steps for developing reservoir sediment management options. *Status: Completed.* Representative alternatives identified for costs; some alternatives identified for transport/WQ modeling; results to be discussed at the August meeting.

K. The LSRWA agency group should quantify any habitat restored or enhanced downstream in the Bay or elsewhere (e.g., terrestrial) as a project benefit; considerations should be given on how to do this. *Status:* Ongoing. But opportunities for quantification are very limited.

L. Bruce Michael and Claire O'Neill will keep the LSRWA agency group updated on the Susquehanna policy group put together by Governor O'Malley. *Status: Ongoing.*

PRELIMINARY INFORMATION -- NOT FOR PUBLIC RELEASE

mmary of Representative Sediment Manageme	nt Alternative	es																
	Innovativ Alterna		Alterna	tive 2A	Open Water Alternat		Alterna	tive 2C	Altern	ative 3A	Alterna	1	Placement Alterna	ative 3C	Alternati	ive 3D	Watershed M Alterna	0
ysical Description																		
Sediment to be removed, cubic yards	1,000	<u>.</u>	1,000		1,000		1,000			0,000	1,000		1,000		1,000,0		1,000	
Sediment to be removed, tons	810,0		810	I	810,0		810			0,000	810,			,000	810,0		810,	
Type of dredging	Hydra		Hydı		Hydra		Hydi			Iraulic	Mecha		Hydr		Hydra		N/	
Transportation method	Pipel		Pipeline		Pipel	ine	Pipe	line		eline	Barge + transf			ke + trucking	Pipeline + dise		N/	
Distance to be transported, miles	1(8+		3)		13	0+0-	+14	3+0)+12	14 +		N/	A
The side of the second s	Bainbridge, slu		Drying/trans Susquehanna S		NT/		N	(A		construction a	t Classification	C	Nearby drying	g site required	Will need dike co		NT/	
Location/type of containment site	water return stockt	1	dike con:	,	N/.	A	N,	A		lewatering to	Shoreline tr	ansier site	with dike c	onstruction	quarry for dev	0	N/	A
	Stock	piled	dike con:	struction	0 1	D.	0 1	D.	extend p	project life					extend pro	oject me		
	Concrete blo	a ala sana ala at	Pooles	Taland	Susquehan		Susqueha	,	Stere 2	0	Mason-Dix	on Quarry	Mason-Dix	xon Quarry	Mason-Dixo	on Quarry	NI	
Final destination of material	Concrete blo	ock market	Pooles	Island	approximately Conowing		approximately Conowir		Stancill	ls Quarry	(Belvide	re site)	(Belvide	ere site)	(Belvider	e site)	N/	A
	T 11. 1	C 1 1 C C	TT 1		Conowing	go Dam	Conowii	igo Dam										
Number of dredging cycles that facility could be used	Facility has a		Unknown, o		No limi	tation	No lim	itation		5	29)	2	23	23			
before capacity is reached	more than 10		sediment 42		1-2		1.	2		2-5	1			20	2-5		N/	Δ
Land to be purchased, acres	10		42	20	1-2		1.	·Z	2	2-3	1.		42	20	2-3	, 	18/	Δ
duction Calculations		000				000						000						
Volume to be removed, cubic yards	1,000	·····	1,000		1,000		1,000			00,000	1,000		1,000		1,000,0		***	
Volume in pipeline, cubic yards	4,000		4,000		4,000		4,000			0,000	N/		4,000		4,000,0		N/	
Volume to be disposed of, cubic yards	N/	А	1,500	0,000	N/.		N		1,50	0,000	1,200		1,500		1,500,0	000	N/	
Number of dredges	1			1	3		2			1	8			-	1		N/	
Number of pipelines	1		1	1	3		2	-		1	0			-	1		N/	
Number of barge loads per day	N/		2		N/		N,			I/A	10		N,		N/A		N/	
Number of truck loads per day	N/		N/		N/		N,			I/A	40			00	N/A		N/	
Dike volume, cubic yards	N/		140.	,000	N/		N,			0,000	N/			,000	140,0		N/	
Booster pumps required	9			/	6		4			12	0		2		14		N/	
Months of operation	Year-r		Year-1		October-Februa		July-March			-round	Year-r		Year-		Year-ro		N/	
Actual operational time, days per year	33		25		83		12			250	25			50	250		N/	
Total sediment removal capacity, cubic yards per day	4,00	00	4,0	000	12,0	00	8,0	00	4,	000	4,0	00	4,0	000	4,00	iU	N/	
e-Time Investment Costs	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hig
Real estate/land purchase			\$4,200,000	\$8,400,000	\$10,000	\$40,000	\$10,000	\$40,000	\$20,000	\$100,000	\$150,000	\$300,000	\$4,200,000	\$8,400,000	\$20,000	\$100,000		
Design and study costs			\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000		\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	May need to a	d some
Booster pump construction	All costs includ		\$2,100,000	\$2,100,000	\$1,800,000	\$1,800,000	\$1,200,000	\$1,200,000	\$3,600,000	\$3,600,000		\$0	\$600,000	\$600,000	\$4,200,000	\$4,200,000	to account for	
Permanent pipeline construction	Rock annual ren	moval cost ???	\$1,300,000	\$2,100,000	\$1,400,000	\$2,300,000	\$1,000,000	\$1,600,000	\$2,100,000	\$3,400,000		\$0 \$0	\$500,000	\$800,000	\$2,900,000	\$4,700,000	activ	0
Transfer site/dike construction			\$1,100,000	\$2,200,000	\$0 \$0	\$(50 5 0	\$0	\$1,100,000	\$2,200,000	0 \$ 0	\$0	\$1,100,000	\$2,200,000	\$1,100,000	\$2,200,000		
Reuse manufacturing plant	¢0.	e0	\$0	\$0	\$0	\$0.140.000) \$0 \$1,210,000	\$0	\$0	\$14 200 000		\$0	\$U ©0,400,000	\$0	\$0	\$0	e0-	
Subtotal Annualized, \$/year	\$0 \$0	\$0 \$0	\$10,700,000 \$477,000	\$19,800,000 \$883,000	\$5,210,000 \$232,000	\$9,140,000 \$407,000) \$4,210,000) \$188,000	\$7,840,000 \$349,000	\$8,820,000 \$393,000	\$14,300,000 \$637,000) \$2,150,000) \$96,000	\$5,300,000 \$236,000	\$8,400,000 \$374,000	\$17,000,000 \$758,000	\$10,220,000 \$456,000	\$16,200,000 \$722,000	\$0 \$0	
										. Čerene i na	, in the second se			5				
M/Removal Costs	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hig
Tipping fee	*0	* 0	\$0	\$0	\$0	\$(#15.000.000	\$0	\$0	\$1,500,000	\$7,500,000		\$18,000,000	\$15,000,000	\$22,500,000	\$15,000,000	\$22,500,000	May need to ad	ld some
Dredging + transportation	\$0 \$0	\$0	\$15,000,000	\$20,000,000	\$10,000,000	\$15,000,000	\$5,000,000	\$10,000,000	\$20,000,000	\$25,000,000	\$40,000,000	\$70,000,000	\$20,000,000	\$30,000,000	\$20,000,000	\$25,000,000	to account for	
Manufacturing processing	\$0	\$0 \$0	\$U	\$0	\$0	\$0,000,000 \$() <u>\$</u> 0	\$0	\$0	\$0,000,000 \$() \$0 \$1 000 000	\$0	\$0	\$0 \$0	\$0	\$0	activ	ities
Construction design and management Subtotal	\$0 \$0	\$0 \$0	\$1,000,000 \$16,000,000	\$2,000,000 \$22,000,000	\$1,000,000 \$11,000,000	\$2,000,000) \$1,000,000) \$6,000,000	\$2,000,000 \$12,000,000	\$1,000,000 \$22,500,000) \$2,000,000 \$34,500,000	" / /	\$2,000,000 \$90,000,000	\$1,000,000 \$36,000,000	\$2,000,000 \$54,500,000	\$1,000,000 \$36,000,000	\$2,000,000 \$49,500,000	¢0.	
	φŪ	⊅0	\$10,000,000	\$22,000,000	\$11,000,000	\$17,000,000	\$6,000,000	\$12,000,000	\$22,500,000	\$54,500,000	\$55,000,000	\$90,000,000	\$36,000,000	\$54,500,000	\$30,000,000	\$49,500,000	\$0	
st per Cubic Yard															_			
sumes yearly removal)	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hig
One-time investment cost, \$/cy	\$0	\$0	\$11	\$20	\$5	\$9	\$4	\$8	\$9	\$14	4 \$2	\$5	\$8	\$17	\$10	\$16	\$0	
Annualized investment cost, \$/cy/year	\$0	\$ 0	-	\$1	\$0	\$() \$ 0	\$0	\$0	\$1		\$0	\$0	\$1	\$0	\$1	\$ 0	
Annual removal cost, \$/cy/year	<u>\$0</u>	<u>\$0</u>		<u>\$22</u>	<u>\$11</u>	<u>\$17</u>		<u>\$12</u>	<u>\$23</u>			<u>\$90</u>	<u>\$36</u>		<u>\$36</u>	<u>\$50</u>	<u>\$0</u>	
Total annual cost, \$/cy/year	\$0	\$0	\$16	\$23	\$11	\$17	7 \$6	\$12	\$23	\$35	5 \$53	\$90	\$36	\$55	\$36	\$50	\$0	
jor Limitations			Currently not a	llowed by law;	Environmental	impacts:	Environmental	impacts:			Large parcels ac	liacent to the	Large parcels e	expected to be	Effluent from de	ewatering will		
<u>,</u>			large parcels ad	jacent to the	NMFS concerns		NMFS concern				reservoir may b		difficult to find		need to be pump			
			river may be ve	ery difficult to							find			,	the Susquehanna			
			find												1			
General Assumptions:											gation impleme							
	All alternatives	s assume the	dredging of a l	ocation in Con	owingo Reserv	oir which cu	rrently has the	highest amou	nts of depositi	on in the entir	e lower Susquel	hanna reservo	oir system; simi	ilar costs could	l be developed f	or the other l	ower Susqueha	nna
Technical Assumptions:	Real estate cost	= farmland co	ost in Harford/C	Cecil County, MI	D; range of cost	=	\$10,000	to	\$20,000	per acre; based	d on Internet sea	rch of agricultu	ural land June 20)13; assume larg	e tracts of land av	vailable.		
<u> </u>	Annualization fa			for interest =			d project life of		years		tor for annualizat	0	3					
							1 /		-	0			\$300,000					
		lic dredge has its own separate pipeline and associated booster pump system, with a production capacity of 4,000 cubic yards per day; cost per booster pump = \$300,000 redging process will add a significant amount of volume to the pipeline; assume pipeline will contain 4 times the dredging volume.																
									e that material t		ed after drying is		1.5	times the origin	nal dredging volu	me.		
							is increased by 2			1	(compared to o	riginal dredged		0	0 0			
			sport to Pooles 1								pacity would be m			500			cubic yards/bar	ge.
	Permanent pipe			\$160,000	to) per mile (\$30-!			0 0, emp	. ,	, 0	2				,, ~···	2
			n cost = 5-foot		feet of material.		es per year, \$8-1											
										sed on \$10-15/	cy and a total vol	ume available	of 35Mcv; the ti	pping fees are a	pplied to the dree	dged amount f	or pipeline deliv	ery and
					arry could be ar					/			,,		••			,

PRELIMINARY INFORMATION -- NOT FOR PUBLIC RELEASE

	Innovative Reuse			Open Water	Placement						Upland I	lacement				Watershed	Managem
	Alternative 1	Alterna	ative 2A	Alterna	tive 2B	Alterna	ative 2C	Altern	ative 3A	Alterna	tive 3B	Alterna	ative 3C	Alternativ	ive 3D	Alter	mative 4
vsical Description	2,000,000			2	000	2.00	0.000			2.00		2.00	0.000	2.000.1	000		00.000
Sediment to be removed, cubic yards	3,000,000	3,000		3,000			0,000	L	0,000	3,000		L	0,000	3,000,0			00,000
Sediment to be removed, tons	2,430,000 Hydraulic	Z,430 Hydi	0,000	2,430 Hydr	<u> </u>		0,000 raulic	.	0,000 Iraulic	2,430 Mech		L	0,000 raulic	2,430,0 Hydrau		Į	30,000
Type of dredging Transportation method	Pipeline		+ barge	Pipe			eline		eline		fer + trucking		ike + trucking	Pipeline + disc			N/A N/A
Distance to be transported, miles	10		-32	r 1pe		Fip	3	l	13	0+0)+12	14 +			N/A
Distance to be transported, times	Bainbridge, slurry screened,	Drying/tran						4	construction at					Will need dike co			
Location/type of containment site	water returned, solids	, 0.	state Park, with	N/	А	N	/A		lewatering to	Shoreline t	ransfer site		g site required	quarry for dew		ז	N/A
Hoeudon, type of containment one	stockpiled	dike con	,					1 2	project life	onorenne e	lunorer once	with dike c	construction	extend pro	0	-	.,
				Susquehan	na River.	Susqueha	nna River,	r								İ	
Final destination of material	Concrete block market	Pooles	Island	approximately		approximately		Stancill	s Quarry	Mason-Dis	on Quarry	Mason-Di	xon Quarry	Mason-Dixor		l I	N/A
				Conowin		,	ngo Dam							(Belvidere	re site)	1	
Number of dredging cycles that facility could be used	Facility has a useful life of	Unknown,	due to local	No lim		No lin		1	2	1	0		8	8		ſ	
before capacity is reached	more than 40 years		transport	INO IIIII	lation	INO IIII	ntation		2	1	0		÷	0		1	
Land to be purchased, acres	100	1,2	250	1-	2	1	-2	2	2-5	4	4	1,2	250	2-5	5	٦	N/A
duction Calculations								1								ſ	
Volume to be removed, cubic yards	3,000,000	3,000	0,000	3,000	,000	3,00	0,000	3,00	0,000	3,000),000	3,00	0,000	3,000,0	000	1	N/A
Volume in pipeline (4X), cubic yards	12,000,000	12,00		12,000	······		0,000	🛊	00,000	N,			00,000	12,000,	án ma marta a sea a		N/A
Volume to be disposed of, cubic yards	N/A	4,500	0,000	N/		N		4,50	0,000	3,600			0,000	4,500,0	000		N/A
Number of dredges	1		3	8			4	ļ	3		4		3	3			N/A
Number of pipelines	1		3	8			4	 	3	(3	3			N/A
Number of barge loads per day	N/A		/	N/		N			[/A		9		/A	N/A			N/A
Number of truck loads per day	N/A	N/		N/		N			/A	1,2		·· ···· ··· ··· ··· ··· ··· ··· ··· ··	500	N/A			N/A
Dike volume, cubic yards	N/A 9	420		N/		IN	/A),000 36	N,			,000	420,00 42			N/A
Booster pumps required Months of operation	Year-round	2 Year-:		10 October-Februa		July-March	(0 months)		round	(Year			6 •round	42 Year-ro			N/A N/A
Actual operational time, days per year	330	25		94			(9 montris) 88		-10unu 50	25		.	50	250			N/A
Total sediment removal capacity, cubic yards per day	4.000		000	32,0			000		,000	12,		.	,000	12,00			N/A
		í a an a		in an		Í	2									\$	Hig
e-Time Investment Costs Real estate/land purchase	Low High	Low \$12,500,000	High \$25,000,000	Low \$10,000	High \$40,000	Low \$10,000	High \$40,000	Low \$20,000	High \$100,000	Low \$440,000	High \$880,000	Low \$12,500,000	High \$25,000,000	Low \$20,000	High \$100,000	Low	LIE
Design and study costs		\$2,000,000	\$5,000,000		\$5,000,000		\$5,000,000	\$2,000,000	-	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	1	
Booster pump construction	All costs included in Harbor	\$6,300,000	\$6,300,000		\$4,800,000		\$2,400,000	- / /) \$0	\$3,000,000 \$0	\$1,800,000		\$12,600,000	\$12,600,000	May need to	
Permanent pipeline construction	Rock annual removal cost ???	\$3,800,000	\$6,200,000	- / /	\$6,200,000		\$3,100,000	\$6,200,000) \$0	\$0	\$1,400,000			\$14,000,000	to account fo	0
Transfer site/dike construction		\$3,400,000	\$6,700,000		\$0	\$0	\$0	\$3,400,000	- · · ·	\$0	\$0	\$3,400,000		\$3,400,000	\$6,700,000	act	tivities
Reuse manufacturing plant		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$(\$0	\$0	\$0	\$0	\$0	\$0	1	
Subtotal	\$0 \$0	\$28,000,000	\$49,200,000	\$10,610,000	\$16,040,000	\$6,310,000	\$10,540,000	\$22,420,000	\$32,700,000	\$2,440,000	\$5,880,000	\$21,100,000	\$40,800,000	\$26,620,000	\$38,400,000	\$(9
Annualized, \$/year	\$0 \$0	\$1,248,000	\$2,193,000	\$473,000	\$715,000	\$281,000	\$470,000	\$999,000	\$1,458,000	\$109,000	\$262,000	\$941,000	\$1,819,000	\$1,187,000	\$1,712,000	Ş()
M/Removal Costs	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hig
Tipping fee		\$0	\$0	\$0	\$C	\$0	\$0	\$4,500,000	\$22,500,000	\$36,000,000	\$54,000,000	\$45,000,000	\$67,500,000	\$45,000,000	\$67,500,000	May need to	add some
Dredging + transportation	\$0 \$0	\$45,000,000	\$60,000,000	\$30,000,000	\$45,000,000	\$15,000,000	\$30,000,000	\$60,000,000	\$75,000,000	\$120,000,000	\$210,000,000	\$60,000,000	\$90,000,000	\$60,000,000	\$75,000,000	to account fo	
Manufacturing processing	\$0 \$0	\$ 0	\$0	\$0	\$C	\$0	\$0	\$0	\$(\$0	\$0	\$0	\$0	\$0	\$0		ivities
Construction design and management	\$0 \$0	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000		_
Subtotal	\$0 \$0	\$46,000,000	\$62,000,000	\$31,000,000	\$47,000,000	\$16,000,000	\$32,000,000	\$65,500,000	\$99,500,000	\$157,000,000	\$266,000,000	\$106,000,000	\$159,500,000	\$106,000,000	\$144,500,000	\$0)
t per Cubic Yard																	
sumes yearly removal)	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hig
One-time investment cost, \$/cy	\$0 \$0	\$9	\$16	\$4	\$5	\$2	\$4	\$7	\$11	\$1	\$2	\$7	\$14	\$9	\$13	\$0)
Annualized investment cost, \$/cy/year	\$0 \$0	\$ 0	\$1	\$ 0	\$0	\$0	\$0	\$0		\$ 0	\$0	\$0	\$1	\$0	\$1	\$0	9
<u>Annual removal cost, \$/cy/year</u>	<u>\$0</u> <u>\$0</u>	<u>\$15</u>	<u>\$21</u>	<u>\$10</u>	<u>\$10</u>		<u>\$11</u>	<u>\$22</u>	<u>\$33</u>	<u>\$52</u>	<u>\$89</u>	<u>\$35</u>	<u>\$53</u>	<u>\$35</u>	<u>\$48</u>		
Total annual cost, \$/cy/year	\$0 \$0	\$16	\$21	\$10	\$16	\$5	\$11	\$22	\$34	\$52	\$89	\$36	\$54	\$36	\$49	\$()
or Limitations		Currently not a	llowed by law:	Environmental	impacts;	Environmental	impacts;			Large parcels a	djacent to the	Large parcels e	expected to be	Effluent from de	ewatering will		
		large parcels ad		NMFS concern	5	NMFS concern				reservoir may b		difficult to find		need to be pump		1	
		river may be ve	,							find				the Susquehanna	a River	1	
		find	-											1		1	
																<u> </u>	
General Assumptions:	These are concept-level cos				0		-	•		-	•						
	All alternatives assume the	dredging of a l	ocation in Cor	nowingo Reserv	oir which cu	rrently has the	highest amou	nts of depositi	on in the entir	e lower Susque	hanna reservo	ir system; sim	ilar costs could	be developed for	for the other l	ower Susque	nanna
Technical Assumptions:	Real estate cost = farmland co	ost in Harford/C	Cecil County, M	D; range of cost	=	\$10,000	to	\$20,000	per acre; based	d on Internet sea	rch of agricultu	ral land June 20)13; assume larg	e tracts of land av	vailable.		<u>,</u>
-	Annualization factor =	22.434	for interest =	3.750%	and	d project life of	50	years		or for annualizat		3	5				
	Each hydraulic dredge has its	own separate pi	peline and asso	ciated booster pu	imp system, w	ith a production			per day; cost pe	r booster pump	=	\$300,000					
	Hydraulic dredging process w	ill add a signfica	nt amount of v	olume to the pip	eline; assume j	pipeline will con	tain	4	times the dred	ging volume.							
	Drying process will be able to	remove a signfi	cant amount of	the water that is	pumped in w	ith the dredged	material; assum	e that material	to be transporte	ed after drying is		1.5	times the origin	nal dredging volur	me.		
	Production capacity for one m								1.2	, during dredgi							
	Barge capacity varies; for trans	sport to Pooles		· ·					redging, the cap	acity would be n	nuch smaller, o	nly	500			cubic yards/b	arge.
	Permanent pipeline cost =		\$160,000			per mile (\$30-	1	/									
	Transfer site/dike constructio	$n \cos t = 5 - foot$	high dike for 3	feet of material.	drving time of	2 months per c	ell, \$8-16/cy co	instruction cost									
												6.053.6 3					
	Tipping fee for Stancils Quarr the trucked amount for truck	y is assumed to	be \$1-5/cy with	h a total volume	available of 9N	Acy; tipping fee				cy and a total vo	lume available	of 35Mcy; the ti	ipping fees are a	pplied to the drec	dged amount i	for pipeline de	livery an

PRELIMINARY INFORMATION -- NOT FOR PUBLIC RELEASE

• •	Lana d' D						TT 4	21			W/ · · ·	1.1.
	Innovative Reuse Alternative 1	Alternative 2A	Open Water Placement Alternative 2B	Alternative 2C	Alternative 3A	Alte	Upland I ernative 3B	Placement Alterna	ative 3C	Alternative 3D		d Managemer rnative 4
ysical Description												
Sediment to be removed, cubic yards	5,000,000 4,050,000	5,000,000	5,000,000	5,000,000	5,000,000		,000,000		0,000 0,000	5,000,000		000,000
Sediment to be removed, tons Type of dredging	4,050,000 Hydraulic	4,050,000 Hydraulic	4,050,000 Hydraulic	4,050,000 Hydraulic	4,050,000 Hydraulic		,050,000 lechanical	4,050 Hvd:		4,050,000 Hydraulic		050,000 N/A
Transportation method	Pipeline	Pipeline + barge	Pipeline	Pipeline	Pipeline		ansfer + trucking	Pipeline + di		Pipeline + discharge pipe		N/A
Distance to be transported, miles	10	8+32	3	3	13		0+0+14)+12	14 + 4		N/A
	Bainbridge, slurry screened,	Drying/transfer site near			Will need dike construe			Nearby drving	g site required	Will need dike construction a	t	
Location/type of containment site	water returned, solids	Susquehanna State Park, with	N/A	N/A	quarry for dewaterin	0	ne transfer site		construction	quarry for dewatering to		N/A
	stockpiled	dike construction	Susquehanna River,	CD'	extend project lif	e				extend project life		
Final destination of material	Concrete block market	Pooles Island	approximately 1 mile d/s of	Susquehanna Rive approximately 1 mile	-	Mason-	-Dixon Quarry	Mason-Dir	xon Quarry	Mason-Dixon Quarry (Belvidere site)		N/A
			Conowingo Dam	Conowingo Dan	n					(Dervidere site)		
Number of dredging cycles that facility could be used	Facility has a useful life of	Unknown, due to local	No limitation	No limitation	1		6		5	5		
before capacity is reached Land to be purchased, acres	more than 40 years 130	sediment transport 2,080	1-2	1-2	2-5		72	2 (080	2-5		N/A
	150	2,000	12	12	2.5		12	2,0		2.5		14/11
oduction Calculations Volume to be removed, cubic vards	5,000,000	5,000,000	5,000,000	5,000,000	5,000,000	5	,000,000	5.00	0,000	5,000,000		N/A
Volume in pipeline (4X), cubic yards	20,000,000	20,000,000	20,000,000	20,000,000	20,000,000		N/A		0,000)0,000	20,000,000		N/A
Volume to be disposed of, cubic yards	N/A	7,500,000	N/A	N/A	7,500,000		,000,000	7,500		7,500,000	1	N/A
Number of dredges	1	5	12	7	5		40		5	5		N/A
Number of pipelines	1	5	12	7	5		0		-	5		N/A
Number of barge loads per day Number of truck loads per day	N/A N/A	12 N/A	N/A N/A	N/A N/A	N/A N/A		48		/A 500	N/A N/A		N/A N/A
Dike volume, cubic vards	N/A N/A	700,000	N/A N/A	N/A N/A	N/A 700,000		2,000 N/A		500 1,000	N/A 700,000		N/A N/A
Booster pumps required	9	35	24	14	60		0		10	70		N/A
Months of operation	Year-round	Year-round	October-February (5 months)	July-March (9 mon	ths) Year-round	Ye	ear-round	Year-	round	Year-round		N/A
Actual operational time, days per year	330	250	104	179	250		250		50	250		N/A
Total sediment removal capacity, cubic yards per day	4,000	20,000	48,000	28,000	20,000		20,000	20,	,000	20,000	ļ	N/A
e-Time Investment Costs	Low High	Low High	Low High	Low Hi	0		High	Low	High	Low High	Low	High
Real estate/land purchase Design and study costs		\$20,800,000 \$41,600,000 \$2,000,000 \$5,000,000	\$10,000 \$40,000 \$2,000,000 \$5,000,000			00,000 \$720,0 00,000 \$2,000,0		\$20,800,000 \$2,000,000	\$41,600,000 \$5,000,000	\$20,000 \$100,00 \$2,000,000 \$5,000,00)	
Booster pump construction	All costs included in Harbor	\$10,500,000 \$10,500,000				00,000 \$2,000,0 00,000	\$0,000,000 \$0 \$0,000,000	\$2,000,000	\$3,000,000	\$21,000,000 \$21,000,00	1 1	o add some lin
Permanent pipeline construction	Rock annual removal cost ???	\$6,400,000 \$10,400,000				00,000	\$0 \$0 \$0	\$2,400,000	\$3,900,000	\$14,400,000 \$23,400,00)	for manageme
Transfer site/dike construction		\$5,600,000 \$11,200,000		\$0		00,000	\$0 \$0	\$5,600,000	\$11,200,000	\$5,600,000 \$11,200,00) ac	tivities
Reuse manufacturing plant		\$ 0 \$ 0	\$0 \$0	\$0	\$0 \$0	\$ 0	\$0 \$0	\$0	\$0	\$0 \$)	
Subtotal	\$0 \$0 \$0 \$0	\$45,300,000 \$78,700,000	\$15,010,000 \$21,640,000		740,000 \$36,020,000 \$51,2			\$33,800,000	\$64,700,000	\$43,020,000 \$60,700,00		\$0 \$0
Annualized, \$/year		\$2,019,000 \$3,508,000	\$669,000 \$965,000			82,000 \$121,0		\$1,507,000	\$2,884,000	\$1,918,000 \$2,706,00		
XM/Removal Costs Tipping fee	Low High	Low High	Low High	Low Hi	gh Low Hi \$0 \$7,500,000 \$37,5	gh Low 00,000 \$60,000,0	High 000 \$90,000,000	Low \$75,000,000	High \$112,500,000	Low High \$75,000,000 \$112,500,00	Low	High
Dredging + transportation	\$0 \$0	\$75,000,000 \$100,000,000		4.0	000,000 \$100,000,000 \$125,0			\$100,000,000	\$150,000,000)	o add some lin
Manufacturing processing	\$0 \$0	\$0 \$0	\$0 \$0	\$0	\$0 \$0	\$ 0	\$0 \$0	\$0	\$ 0	\$0 \$)	for manageme
Construction design and management	\$0 \$0	\$1,000,000 \$2,000,000	\$1,000,000 \$2,000,000		, , , , , , , , , , , , , , , , , , , ,	00,000 \$1,000,0		\$1,000,000		\$1,000,000 \$2,000,00)	ctivities
Subtotal	\$0 \$0	\$76,000,000 \$102,000,000	\$51,000,000 \$77,000,000	\$26,000,000 \$52,0	000,000 \$108,500,000 \$164,5	00,000 \$261,000,0	000 \$442,000,000	\$176,000,000	\$264,500,000	\$176,000,000 \$239,500,00) (\$0
st per Cubic Yard								_			_	
sumes yearly removal)	Low High	Low High	Low High		gh Low Hi		High	Low	High	Low High	Low	High
One-time investment cost, \$/cy	\$0 \$0	\$9 \$16		\$2	\$3 \$7		\$1 \$1 \$0 \$0	\$7 \$0	\$13			\$0 \$0
Annualized investment cost, \$/cy/year Annual removal cost, \$/cy/year	\$0 \$0 <u>\$0</u> \$0	\$0 \$1 <u>\$15</u> <u>\$20</u>	\$0 \$0 \$10 \$15	\$0 \$5	\$0 \$0 <u>\$10</u> <u>\$22</u>	-	\$0 \$0 \$52 \$88	\$0 <u>\$35</u>	\$1 <u>\$53</u>	\$0 \$ \$35 \$4		\$0 \$0
Total annual cost, \$/cy/year	\$0 \$0 \$0	\$16 \$16 \$21	\$10 \$10 \$10		\$10 \$11 \$22		\$52 \$88	\$36				\$0
or Limitations	in the second						els adjacent to the	Large parcels e		· · · · · · · · · · · · · · · · · · ·		īĀ
gor minitations		Currently not allowed by law; large parcels adjacent to the	NMFS concerns	Environmental impact NMFS concerns	>,	0 1	ay be difficult to	Large parcels e difficult to find		Effluent from dewatering wil need to be pumped back to	· [
		river may be very difficult to	r thir o concerns	i thir o concerno		find	ay be anneale to	unneut to hite	a meanoy	the Susquehanna River		
		find										
	/T1 . 1 1 .		D. 1111 1 1					6.1 1				
General Assumptions:	These are concept-level cost		y. Detailed design and cost on nowingo Reservoir which cur	-	-	•				d be developed for the other	lower Susau	abanna
		0 0	5	• •	•		•			•	lower Susque	liaiiiia
Technical Assumptions:	Real estate $cost = farmland co$			\$10,000 t)13; assume larg	ge tracts of land available.		
	Annualization factor = Each hydraulic dredge has its o	22.434 for interest =	3./50% and ciated booster pump system, wi	1 /	· ·	ng factor for annual		3 \$300,000				
	Hydraulic dredging process wil					e dredging volume.	•	~500 , 000				
	Drying process will be able to							1.5	times the origin	nal dredging volume.		
	,	0	yards per day; material volume i	0			dging process		0			
	Barge capacity varies; for trans				ards; for in-reservoir dredging,	he capacity would l	be much smaller, o	nly	500		cubic yards/	barge.
	Permanent pipeline cost =	\$160,000 • • • • • • • • • • • • • • • • • •	. ,	per mile (\$30-50 per li	/							
			feet of material, drying time of					1. 1			1	111
	Tinning fee for Stangile One	r is assumed to be \$1.5 /or to	ning tee for Macon-Divon (Jun	rrv is based on \$10.157	cy the tinning tees are applied t	o the dredged arrow	unt for module de	IVery and to the	trucked amour	at for truck delivery outricht -		
	Tipping fee for Stancils Quarry another option to tipping fees.		ping tee for Mason-Dixon Qua	rry is based on \$10-15/	cy; the tipping fees are applied t	o the dredged amou	unt for pipeline de	livery and to the	e trucked amour	nt for truck delivery; outright p	urchase of qua	arry could be

SCREENING LEVEL ESTIMATE

2A - Open Water Placement Pooles Island Open Water Placement

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

SCENARIO

Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped downstream to a temporary placement site that is available near Port Deposit. At this location material can be dewatered and loaded into barges. Once the dredged material is placed onto the barges it will be moved to a placement site at Pooles Island Md

ASSUMPTIONS/BASIS FOR ESTIMATE:

1) The Pooles Island placement area is assumed to be 350 acres, the expansion of the Pooles Island site connects G-West to Site 92. Allowable fill would be to a depth to -11' MLLW.

2) The 350 ac site is identified as having 4.7 mcy of capacity which would result in an 8.3 ft placement thickness (4,700,000cy x 27cf/cy /350 ac / 43560 cf/ac = 8.32 ft thick). The assumption holds that Pooles Island capacity to handle new material recharges yearly allowing for 4.7 CY of material to be placed every year.

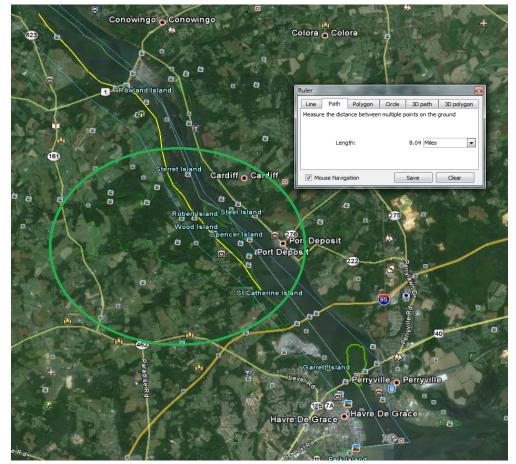
3) Assume 1 cy of sediment contains 0.81 tons of solids.

4) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

5) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.

6) Approximately 7 boosters per pipe at \$300,000 per booster will be needed to get hydraulically dredged material to a temporary placement site that is assumed to be available across the river from Port Deposit (circled in green in the picture below) the dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.

7) The Legislative restrictions for open water placement at Pooles Island would be lifted or suspended. Opposition from the fishing community will be assuaged.


8) Dredged material would first be removed from the reservoir via hydraulic dredging and pumped to a temporary holding site near Port Deposit. This site would be a number of acres surrounded by a sediment holding dike which will contain the dredged material while it is dewatered by working and trenching the material with bulldozers. Drying the material will take approximately 4 months per cell.

9) After the sediment is dewatered the material will then be mechanically loaded into barges via clam shell dredge or large excavators and transported to the Pooles Island placement site ~30 Miles by barge The material would then be pumped from the barge into the Pooles Island open water site.

10) We are assuming a 2500 cy / barge will have access to transfer sites at our temporary dewatering site

11) Equipment needed: Dredge's, Pipe, Booster Pumps, Excavators (enough to remove the same amount of material that the dredge pumps per hour), Bulldozers (to trench and move material for drying), Barges.

Potential temporary placement sites across river from Port Deposit in the Susquehanna St Park with access to River.

Location of Pooles island

Evaluation of Available Capacity:

	oupachy.						
Total Amount of Material to be dredged (CY)	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day or 1000000 CY/yr) per Dredge		Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be Piped (miles)	Number of Pipes	Number of Booster pumps	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft or 1 yd depth
1,000,000	1	250	4,000,000	8	1	7	800
3,000,000	3	250	12,000,000	8	3	21	2,500
5,000,000	5	250	20,000,000	8	5	35	4,100

Total (CY) of Sediment Plus Water Volume Placed into Temporary Holding Cells During One Year	Hydraulically Dredged	Acreage needed for 6 drying Cells which are used 2 times per year for temporary placement		Dike Length in Feet for 6 cells	cells at 5 ft elevation	Dewatered Volume of Material (1.5 times original amount dredged)
4,000,000	800	420	70	33,200	140,000	1,500,000
12,000,000	2,500	1,250	210	99,600	420,000	4,500,000
20,000,000	4,100	2,080	350	166,000	700,000	7,500,000

Temporary Dewatering Sediment Cells and Associated Months of Handling

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	
Pump	1	2	3	4	5	6	
Dry	2,3,4,5	3,4,5,6	4,5,6,7	6,7,8,9	7,8,9,10	8,9,10,11	Cycle 1
Remove	6	7	8	9	10	11	
Pump	7	8	9	10	11	12	
Dry	8,9,10,11	9,10,11,12	10,11,12,1	11,12,1,2,	12,1,2,3	1,2,3,4	Cycle 2
Remove	12	1	2	3	4	5	

Volume of Material to be barged to Pooles Island After Drying (CY)	Volume of Dried Material per Drying Cell (CY)	Area of one Drying Cell (acres)	Transfer pads and associated 400 Cy/hr transfer excavators per Drying Cell	Number of barge loads per day	Number of loads per year at 2500 cy/barge	Percentage of Material Dredged per year that Pooles island can Handle per year (%)	# of dredging cycles that facility could be used before capacity is reached
1,500,000	130,000	70	1	2	600	100	Unknown
4,500,000	380,000	210	4	7	1,800	100	Unknown
7,500,000	630,000	350	7	12	3,000	63	Unknown

SCREENING LEVEL ESTIMATE

2B - Open Water Placement 5 Months of Sediment Bypassing

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

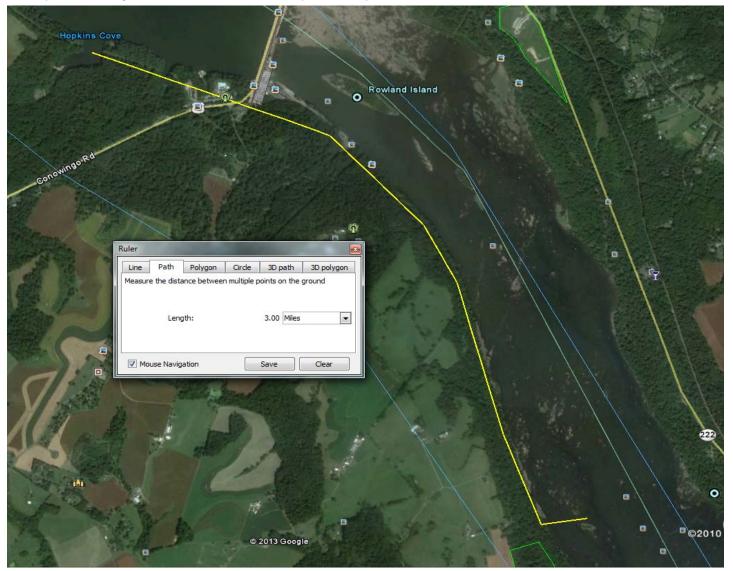
SCENARIO

Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped past Conowingo Dam downstream to a release point bypassing sediment over 5 months from October - February. ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cv of sediment contains 0.81 tons of solids

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are approximately 105 work days in five months and up to 10 work hours days.


4) A sediment release point can be found down stream of the dam where channel hydraulics would promote sustainable sediment transport.

5) Approximately 2 boosters per pipe at \$300,000 per booster are needed to get hydraulically dredged material past Conowingo Dam. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter

6) The Legislative restrictions for open water placement would be lifted or suspended. Opposition from the fishing community will be assuaged.

7) Equipment needed: Dredge's, Pipe, Booster Pumps.

Sediment Pipe around Conowingo Dam and location of Down Stream Release point in the Susquehanna River.

Evaluation of Available	e Capacity:						
	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day per Dredge at 21 days per month or 84000 CY per month	Number of days to dredge amount at given	Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be piped (miles)	Number of Pipes	Number of Booster pumps	Percentage of Material Dredged per year that can be Bypassed per year (%) (No Total Capacity Limit)
1,000,000	3	83	4,000,000	3	3	6	100
3,000,000	8	94	12,000,000	3	8	16	100
5,000,000	12	104	20,000,000	3	12	24	100

SCREENING LEVEL ESTIMATE

2C - Open Water Placement 9 Months of Sediment Bypassing

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

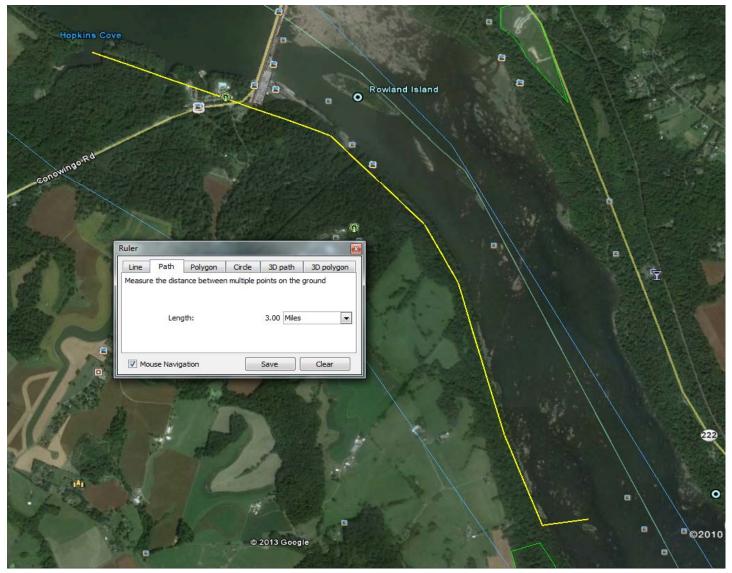
SCENARIO

Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped past Conowingo Dam downstream to a release point bypassing sediment over 9 months from July-March. ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cv of sediment contains 0.81 tons of solids

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are approximately 190 work days in nine months and up to 10 work hours days.


4) A sediment release point can be found down stream of the dam where channel hydraulics would promote sustainable sediment transport.

5) Approximately 2 boosters per pipe at \$300,000 per booster are needed to get hydraulically dredged material past Conowingo Dam. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter

6) The Legislative restrictions for open water placement would be lifted or suspended. Opposition from the fishing community will be assuaged.

7) Equipment needed: Dredge's, Pipe, Booster Pumps.

Sediment Pipe around Conowingo Dam and location of Down Stream Release point in the Susquehanna Rive

Evaluation of Available	Capacity:						
	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day per Dredge at 21 days per month or 84000 CY per month	dredge amount at given	Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be piped (miles)	Number of Pipes	Number of Booster pumps	Percentage of Material Dredged per year that can be Bypassed per year (%) (No Total Capacity Limit)
1,000,000	2	125	4,000,000	3	2	4	100
3,000,000	4	188	12,000,000	3	4	8	100
5 000 000	7	179	20 000 000	3	7	14	100

SCREENING LEVEL ESTIMATE

3A - Upland Placement Stancil Quarry Upland Placement

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

SCENARIO

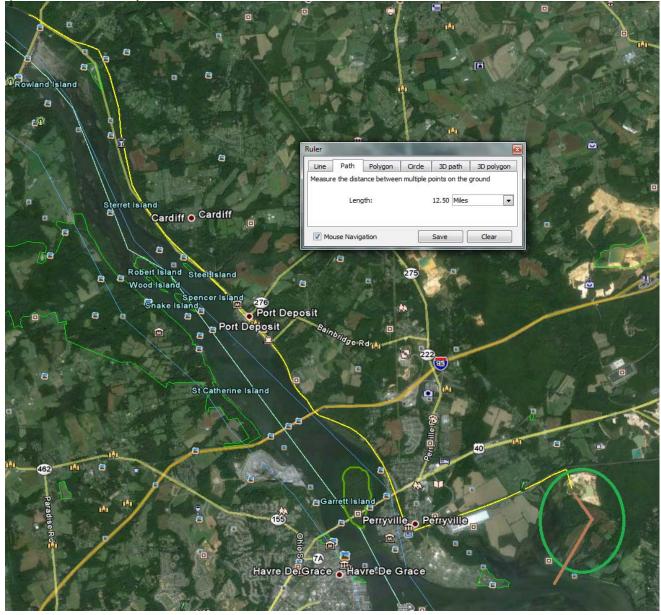
Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped downstream to a dewatering site at Stancil Quarry before it is placed in a permanent site that is available at Stancil Quarry.

ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cy of sediment contains 0.81 tons of solids

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.


4) Approximately 12 boosters per pipe at \$300,000 per booster will be needed to get hydraulically dredged material to Stancil Quarry. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.

5) Dredged material would first be removed from the reservoir via hydraulic dredging and pumped 13 miles to a holding area at Stancil Quarry where it can be dewatered to the Susquehanna flats. Once the material is dewatered it can be placed perminantly in final fill areas at the quarry. The dewatering site at the quarry would be a number of acres surrounded by a sediment holding dike which will contain the dredged material while it is dewatered by working and trenching the material with bulldozers. Drying the material will take approximately 4 months per cell.

6) After the sediment is dewatered the material will then be pushed and moved via bulldozer and excavator to a final fill location within Stancil Quarry.

7) Equipment needed: Dredge's, Pipe, Booster Pumps, Excavators, Bulldozers (to trench and move material for drying).

Pump and Placement at Stancil Quarry

DRAFT-Upland Placement V-8.xlsx

Evaluation of	Available	Capacity:						
Total Amount o to be dredge		Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day or 1000000 CY/yr) per Dredge	Number of days to dredge amount at given number of dredges.	Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be Piped (miles)	Number of Pipes	Number of Booster pumps	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft or 1 yd depth
1,000,0	000	1	250	4,000,000	13	1	12	800
3,000,0	000	3	250	12,000,000	13	3	36	2,500
5,000,0	000	5	250	20,000,000	13	5	60	4,100

Total (CY) of Sediment Plus Water Volume Placed into Temporary Holding Cells During One Year	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft or 1 yd depth	Acreage needed for 6 drying Cells which are used 2 times per year for temporary placement	, ,	Dike Length in Feet for 6 cells	cells at 5 ft elevation	Dewatered Volume of Material (1.5 times original amount dredged)
4,000,000	800	420	70	33,200	140,000	1,500,000
12,000,000	2,500	1,250	210	99,600	420,000	4,500,000
20,000,000	4,100	2,080	350	166,000	700,000	7,500,000

Temporary Dewatering Sediment Cells and Associated Months of Handling

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	
Pump	1	2	3	4	5	6	
Dry	2,3,4,5	3,4,5,6	4,5,6,7	6,7,8,9	7,8,9,10	8,9,10,11	Cycle 1
Remove	6	7	8	9	10	11	
Pump	7	8	9	10	11	12	
Dry	8,9,10,11	9,10,11,12	10,11,12,1	11,12,1,2,	12,1,2,3	1,2,3,4	Cycle 2
Remove	12	1	2	3	4	5	

Volume of Material for Permanent placement at Stancil Quarry After Drying (CY)	Volume of Dried Material per Drying Cell (CY)	Area of one Drying Cell (acres)	Percentage of Material Dredged per year that Stancil Quarry can Handle per year (%)	# of dredging cycles that facility could be used till capacity is reached
1,500,000	130,000	70	Unknown	6
4,500,000	380,000	210	Unknown	2
7,500,000	630,000	350	Unknown	1

SCREENING LEVEL ESTIMATE

3B - Upland Placement Mason Dixon Quarry Upland Placement - Mechanical Dredge

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

SCENARIO

Mechanical dredges will be used to remove sediment from the Conowingo Reservoir and place that sediment into barges, then the barges will circulate between the dredges and the southern shoreline where their contents will be offloaded via excavators. The southern shoreline was chosen due to the rail line on the northern shoreline, which would make offloading the barges too expensive or potentially unfeasible. There will be staging areas on the southern shoreline for the transfer of dredge material from each barge to the trucks An excavator at each transfer site will then place the wet material into trucks able to hall 12 cy of wet material. Each staging area will have one excavator which will unload the barge and transfer its contents to the trucks at a assumed rate of one truck every 10 minutes. The trucks will then cross the Conowingo Bridge and drive to Mason Dixon Quarry where they will unload their contents, and return to be filled again.

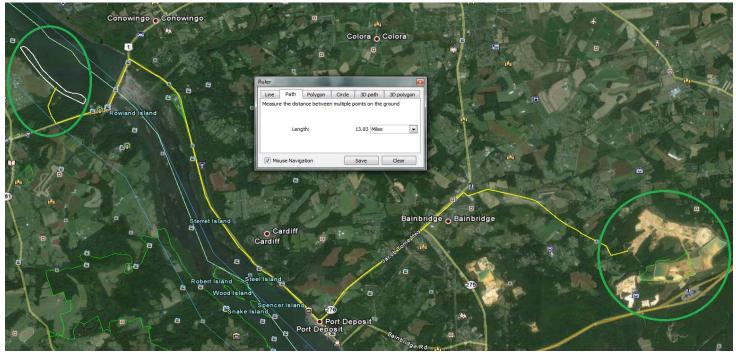
ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cy of sediment contains 0.81 tons of solids.

2) An initial estimate of the sizing of a mechanical dredge for Conowingo reservoir suggested a mechanical dredge capable of removing remove 500 CY / day would be the minimum size dredge needed..

3) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.

4) Pipes or pumping of sediment infrastructure are not needed for the logistics of this example.


5) Dredged material would first be removed from the reservoir via mechanical dredging and barged to a transfer sites on the Conowingo Reservoir southern shore. There the wet material will be transferred to trucks via excavators. The material will then be trucked to Mason Dixon Quarry for final placement.

6) The depth necessary to move the required number of 500 CY barges is present or can be dredged, and the dock structure to allow excavators to transfer sediment from barge to truck will be able to be constructed.

7) Any temporary to permanent road structures to allow sediment trucks to access state, or county roads and highways will be built, and all road access for the large number of trucks will be approved.

8) Equipment needed: Mechanical Dredge, Barges, Trucks, Excavators, and Bulldozers (to move material at Mason Dixon Quarry).

Potential barge truck transfer site with Truck access to Roads and the location of Mason Dixon quarry

Evaluation of Available Capacity: Based on Mechanical Dredging

т		Number of Dredges at 500 CY/day per Dredge	dredge amount at given	Actual CY of Sediment Plus Water Volume Mechanically Dredged (1.2 times original amt.)	Number of Barge Loads per day at 500 CY per barge	~ Total Number of Truck Loads Per Day @ ~42 Truck Loads per Barge	Loads Por Yoar	Number of Transfer sites at 6 trucks per hour per transfer site
	1,000,000	8	250	1,200,000	9.6	400	100000	10
	3,000,000	24	250	3,600,000	28.8	1200	300000	29
	5,000,000	40	250	6,000,000	48.0	2000	500000	48

Transfer Area Acreage needed at 1.5 acres per Transfer Site	Volume of Material for Permanent placement at Mason Dixon Quarry (CY)	Percentage of Material Dredged per year that Mason Dixon can Handle per year (%)	# of dredging cycles that facility could be used till capacity is reached
15	1,200,000	Unknown	29
44	3,600,000	Unknown	10
72	6,000,000	Unknown	6

SCREENING LEVEL ESTIMATE

3C - Upland Placement Mason Dixon Quarry Upland Placement - Hydraulic Dredge

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

SCENARIO

Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped downstream to a dewatering site that is across the Susquehanna River from Port Deposit. At this location material can be dewatered then once dried the material can be placed onto the trucks via excavators to be moved to a final placement site at Mason Dixon Quarry.

ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cy of sediment contains 0.81 tons of solids.

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.

4) Approximately 2 boosters per pipe at \$300,000 per booster will be needed to get hydraulically dredged material to past Conowingo Dam 3 miles to a temporary placement site assumed to be available (the area outlined in white in picture below) across the Susquehanna River from Port Deposit. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.

5) Dredged material would first be removed from the reservoir via hydraulic dredging and pumped 3 miles to a holding area across the river from Port Deposit, where it can be dewatered. Once the material is dewatered it can be loaded onto trucks to be transported to Mason Dixon Quarry. The dewatering site would be a number of acres surrounded by a sediment holding dike which will contain the dredged material while it is dewatered by working and trenching the material with bulldozers. Drying the material will take approximately 4 months per cell.

6) After the sediment is dewatered the material will then be mechanically loaded into trucks via excavators and transported to the Mason Dixon Quarry final placement site ~12 Miles by truck and going over the Millard E. Tydings Bridge which is part of interstate 95 and driving on other state and Local Roads roads and some temporary roads created for this project. The material would then be offloaded from the trucks to the final placement site at the quarry.

7) Any temporary to permanent road structures to allow sediment trucks to access state, or county roads and highways will be built, and all road access for the large number of trucks will be approved.

8) Equipment needed: Dredge's, Pipe, Booster Pumps, Excavators, Bulldozers (to trench and move material for drying), and Trucks.

Potential dewatering placement sites across river from Port Deposit in the Susquehanna St Park with Truck access to Roads and the location of Mason Dixon quarry.

Evaluation of Available	Capacity:						
Total Amount of Material to be dredged (CY)	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day or 1000000 CY/yr) per Dredge	Number of days to dredge amount at given number of dredges.	Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be Piped (miles)	Number of Pipes	Number of Booster pumps	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft or 1 yd depth
1,000,000	1	250	4,000,000	3	1	2	800
3,000,000	3	250	12,000,000	3	3	6	2,500
5,000,000	5	250	20,000,000	3	5	10	4,100

Total (CY) of Sedimo Plus Water Volumo Placed into Tempora Holding Cells Durin One Year	Hydraulically Dredged	Acreage needed for 6 drying Cells which are used 2 times per year for temporary placement		Dike Length in Feet for 6 cells	cells at 5 ft elevation	Dewatered Volume of Material (1.5 times original amount dredged)
4,000,000	800	420	70	33,200	140,000	1,500,000
12,000,000	2,500	1,250	210	99,600	420,000	4,500,000
20,000,000	4,100	2,080	350	166,000	700,000	7,500,000

Temporary Dewatering Sediment Cells and Associated Months of Handling

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	
Pump	1	2	3	4	5	6	
Dry	2,3,4,5	3,4,5,6	4,5,6,7	6,7,8,9	7,8,9,10	8,9,10,11	Cycle 1
Remove	6	7	8	9	10	11	
Pump	7	8	9	10	11	12	
Dry	8,9,10,11	9,10,11,12	10,11,12,1	11,12,1,2,	12,1,2,3	1,2,3,4	Cycle 2
Remove	12	1	2	3	4	5	

Volume of Material for Permanent placement at Stancil Quarry After Drying (CY)	Volume of Dried Material per Drying Cell (CY)	Area of one Drying Cell (acres)	~ Total Number of Truck	Number of Transfer sites at 6 trucks per hour over 10 hours per transfer site	Dredged per year that Mason Divon Quarry can	# of dredging cycles that facility could be used till capacity is reached
1,500,000	130,000	70	125000	9.0	Unknown	23
4,500,000	380,000	210	375000	25.0	Unknown	8
7,500,000	630,000	350	625000	42.0	Unknown	5

SCREENING LEVEL COST ESTIMATE

3D - Upland Placement

Mason Dixon Belvidere Quarry Upland Placement - Hydraulic Dredge

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir SCENARIO

Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped downstream directly to the Mason Dixon (Belvidere Plant) Quarry in Cecil County Md., where it can be dewatered and permanently placed at the site.

ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cy of sediment contains 0.81 tons of solids.

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.

4) Approximately 13 boosters per pipe at \$300,000 per booster will be needed to get hydraulically dredged material to Mason Dixon Belvidere Quarry. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.

5) Dredged material would first be removed from the reservoir via hydraulic dredging and pumped over 13 miles to a holding area at Mason Dixon Belvidere Quarry where it can be dewatered to <u>the</u> <u>Susquehanna River or to the Susquehanna flats approximately 5 miles away</u>. Once the material is dewatered it can be placed permanently in final fill areas at the quarry. <u>The dewatering site will be</u> <u>a number of acres surrounded by a sediment holding dike which will contain the dredged material while it is dewatered by working and trenching the material with buildozers. Drying the material will take approximately 4 months per cell.</u>

6) Where needed the pipeline can be constructed along roads, rail lines and thru areas of farm land or forest.

7) Initially the dredges will pump sediment under the train trestle on Old Conowingo Creek in order to cross under the rail lines, and move the material in the pipeline from water to land.

8) Cells will be set up to dewater the sediment at the Quarry and Effluent will be pumped back to the Susquehanna River or the Susquehanna Flats area 5 miles away. After the sediment is dewatered the material will then be pushed and moved via bulldozer and excavator to a final fill location within the Quarry.

9) Equipment needed: Dredge's, Pipe, Booster Pumps, Excavators, Bulldozers (to trench and move material for drying).

Location of Proposed Pipeline and Mason Dixon Belvidere Quarry in Cecil County Md.

Conowingo Creek	273 CRISING Sun
Conowingo	Line Path Pro Measure the distance between multiple points on the ground
	Length: 13.40 Miles
C Darlington	✓ Mouse Navigation Save Clear Ⅲ Ⅰ ● ●
Sterret Island o Cardiff	o Bainbridge
Robert Islandsteel Island Wood Island Shake Island Port Deposition	

Belvidere Quarry

Evaluation of Availab	le Capacity:						
Total Amount of Materi to be dredged (CY)	al Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day or 1000000 CY/yr.) per Dredge	Number of days to dredge amount at given number of dredges.	Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be Piped (miles)	Number of Pipes	Number of Booster pumps	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft. or 1 yd. depth
1,000,000	1	250	4,000,000	<u>14</u>	1	<u>13</u>	800
3,000,000	3	250	12,000,000	<u>14</u>	3	<u>39</u>	2,500
5,000,000	5	250	20,000,000	<u>14</u>	5	<u>65</u>	4,100

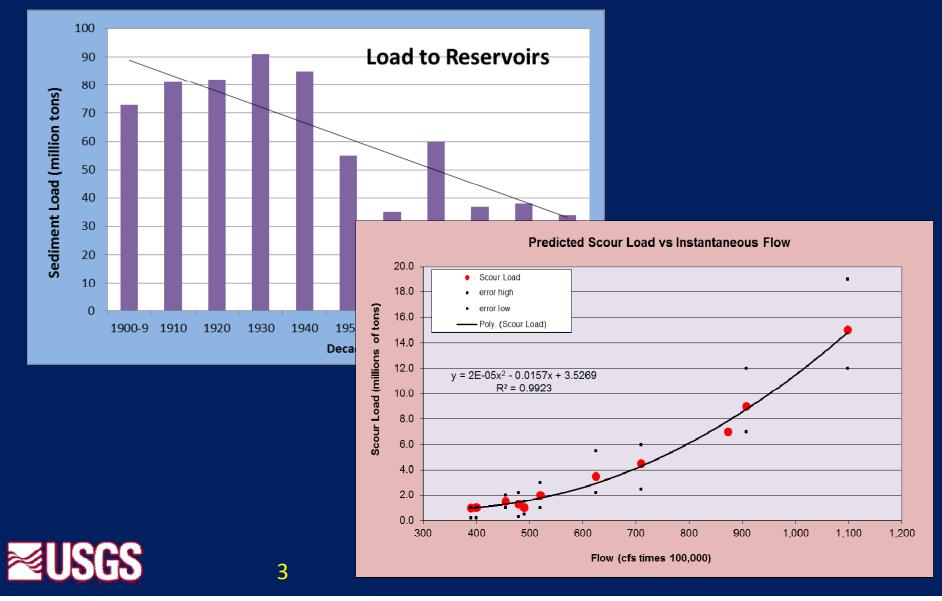
	Plus Water Volume	Fauivalent Acreage of	Acreage needed for 6 drying Cells which are used 2 times per year for temporary placement	<u>Area of one Drying</u> <u>Cell (acres)</u>	<u>Dike Length in Feet for</u> <u>6 cells</u>	Dike Volume in CY for 6 cells at 5 ft. elevation		<u>Distance to Pipe</u> <u>Effluent from</u> <u>Dewatering Operation</u> (miles) using 2 pumps
	4,000,000	<u>800</u>	<u>420</u>	<u>70</u>	<u>33,200</u>	<u>140,000</u>	<u>1,500,000</u>	<u>5</u>
Ī	12,000,000	2,500	1,250	210	99,600	420,000	4,500,000	5
Ī	20.000.000	4,100	2,080	350	166,000	700.000	7,500,000	5

Temporary Dewatering Sediment Cells and Associated Months of Handling

	<u>Cell 1</u>	<u>Cell 2</u>	<u>Cell 3</u>	<u>Cell 4</u>	<u>Cell 5</u>	<u>Cell 6</u>	
<u>Pump</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	
Dry	<u>2,3,4,5</u>	<u>3,4,5,6</u>	<u>4,5,6,7</u>	<u>6,7,8,9</u>	<u>7,8,9,10</u>	<u>8,9,10,11</u>	Cycle 1
Remove	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	
<u>Pump</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	
<u>Dry</u>	<u>8,9,10,11</u>	<u>9,10,11,12</u>	<u>10,11,12,1</u>	<u>11,12,1,2,</u>	<u>12,1,2,3</u>	<u>1.2.3.4</u>	Cycle 2
<u>Remove</u>	<u>12</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	

Volume of Material for Permanent placement at Mason Dixon Belvidere Quarry After Drying (CY)	Material per Drying	<u>Area of one Drying</u> <u>Cell (acres)</u>	Percentage of Material Dredged per year that Mason Dixon Belvidere Quarry can Handle per year (%)	# of dredging cycles that facility could be used before capacity is reached
1,500,000	<u>130,000</u>	<u>70</u>	Unknown	23
4,500,000	<u>380,000</u>	<u>210</u>	Unknown	8
7,500,000	7,500,000 <u>630,000</u>		Unknown	5

Mike Langland – USGS August 15, 2013



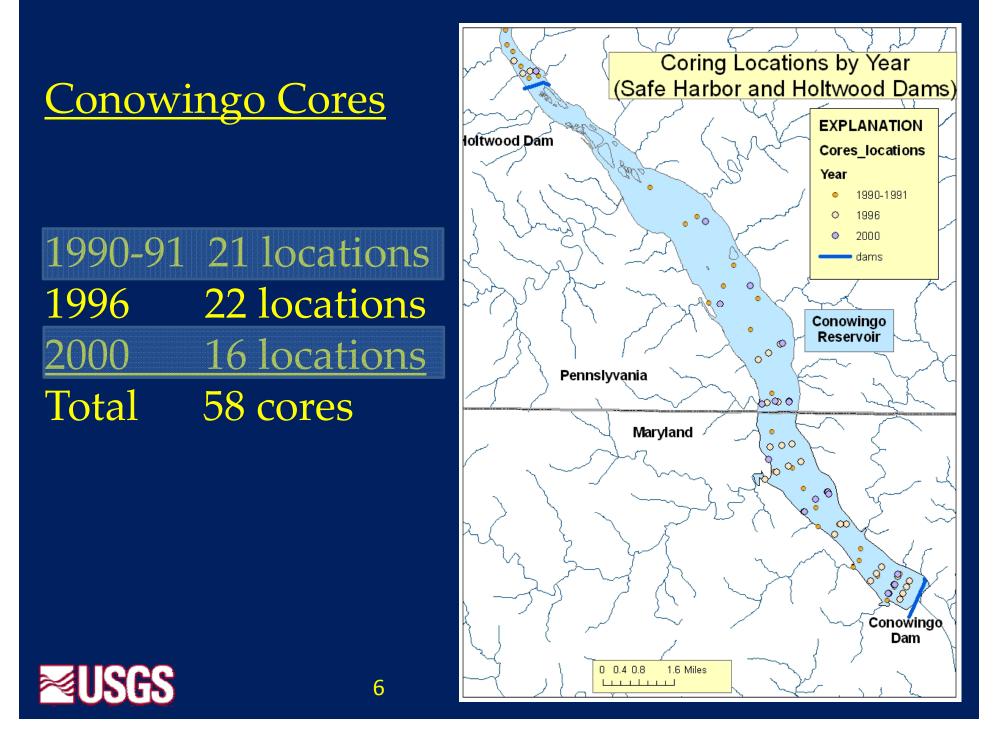
Goals – Information on 3 topics 1. Sediment Transport - (flood frequencies,

- sediment transport rates, trapping, and delivery, etc.)
- 2. Present information on particle size distribution and location
- 3. Scour Model vs. Actual

Load and scour predictions for Susquehanna River at Conowingo based on the following --

Flow and load predictions for Susquehanna River at Conowingo for selected discharges

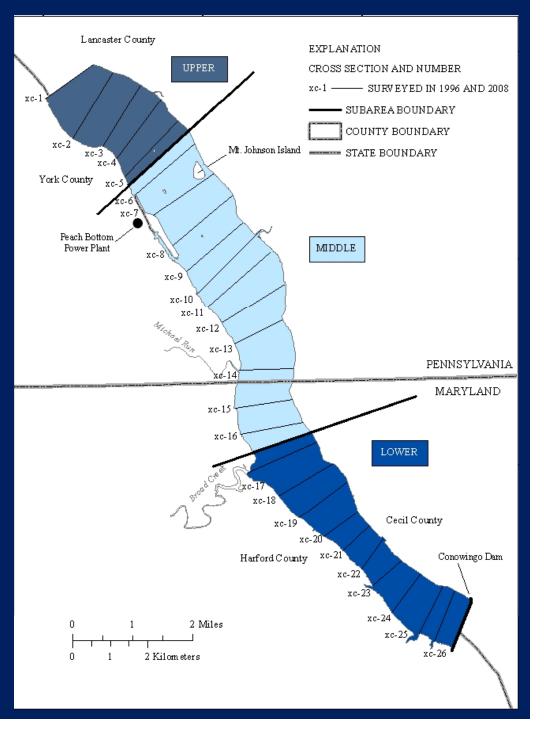
Flow (cubic feet per second)	Recurrence Interval (years)	Number of days in 100 years	Predicted scour above 400,000 cfs (tons) ¹	Predicted total load scour plus watershed (tons) ²	Percent scour to total load
1,000,000	80	1.25	12,000,000	28,000,000	43
900,000	45	2.2	8,000,000	20,200,000	40
800,000	25	4	5,800,000	18,000,000	32
700,000	15	6.5	4,000,000	16,000,000	25
600,000	10	10	3,000,000	13,400,000	22
500,000	6.25	16	1,600,000	7,400,000	22
400,000	4	25	1,000,000	4,500,000	22
300,000	1.5	68	0	1,000,000	0


1 – predicted scour from USGS scour equation, bathymetry change, and literature estimates.

2 – predicted total load based on regression equation, bathymetry change, and literature estimates.

Annual Sediment Loads and Trapping Over Time

Time Period	Average Annual Load to Reservoirs (million tons/yr)	Reservoir Trapping %	Average Annual Load Trapped (tons)	Average Annual Load to Bay (million tons/yr)
1928-1940	8.7	75-80	6.7	2.0
1941-1950	8.5	70-75	6.2	2.3
1951-1971	5.7	65-70	3.9	1.8
1973-1992	4.8	60-65	3.0	1.8
1993-2011	3.4	55-60	1.9	1.5
1972	15	0	(-15)	30
USGS				5


Conowingo Cores

<u>1990</u> Upper – 80% sand Middle – 39% sand Lower – 5% sand (35% clay)

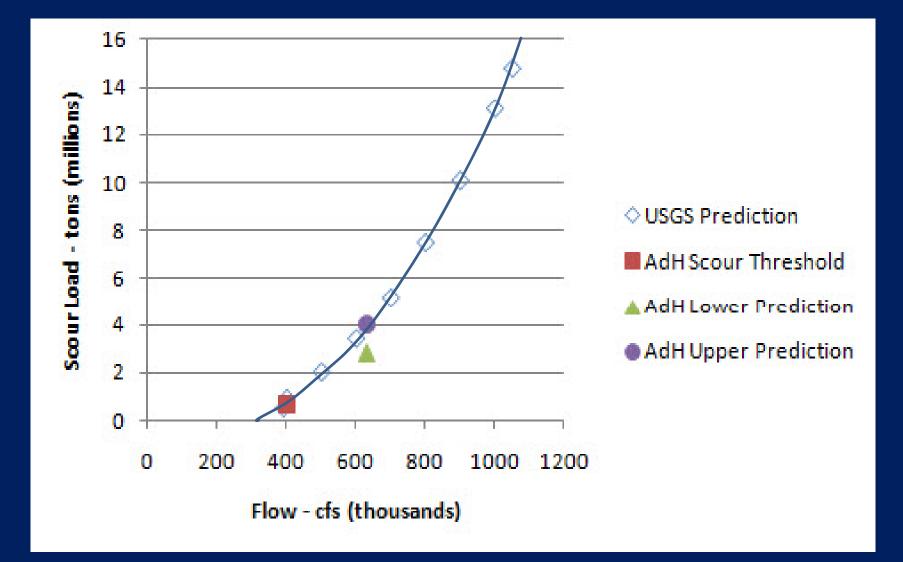
2000

Upper – 83% sand Middle – 43% sand Lower – 15% sand (12% clay)

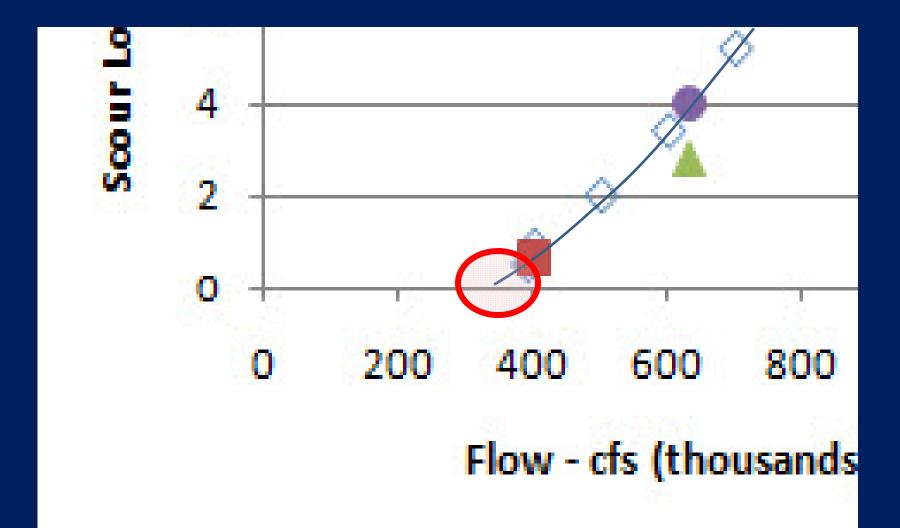
7

Total Mass of Sand in Conowingo Reservoir

Location		al Sediment osition (tons)	% Sand	Total Sand deposition (tons)
1990-Upper	11,000,000		80	8,800,000
1990-Middle	64,000,000		39	24,000,000
1990-Lower	80,500,000		5	4,000,000
2000-Upper	11,500,000		83	9,500,000
2000-Middle	60,000,000		43	25,000,000
2000-Lower	103,000,000		15	15,500,000
2012-Upper (projected)		11,000,000	84	9,600,000
2012-Middle (projec	64,000,000	45	27,500,000	
2012-Lower (project	108,000,000	20	21,600,000	



<u>Summary</u>


- Long-term sediment transport rates into/out of reservoirs declining - Historical data indicates decreasing trapping efficiency over time - Increasing discharge results in increasing scour (400-700,000 cfs, ~23%) Sand is moving and displacing fines down gradient in Conowingo Reservoir Conowingo Reservoir is in or close to equilibrium phase (~93% filled)

Estimated Scour vs. Modeled Scour (Adh)

Estimated Scour Threshold

SEDIMENT MANAGEMENT SCENARIOS

Agitation Dredging

Goal: Transport bed sediments through the dam by re-suspending reservoir bed sediments through agitation dredging

Requirements

- High pressure water jets or diffusers to re-suspend bed sediments upstream of dam
- Adequate flow velocity to transport re-suspended sediment through Conowingo Dam (function of sediment particle size and bed shear stress

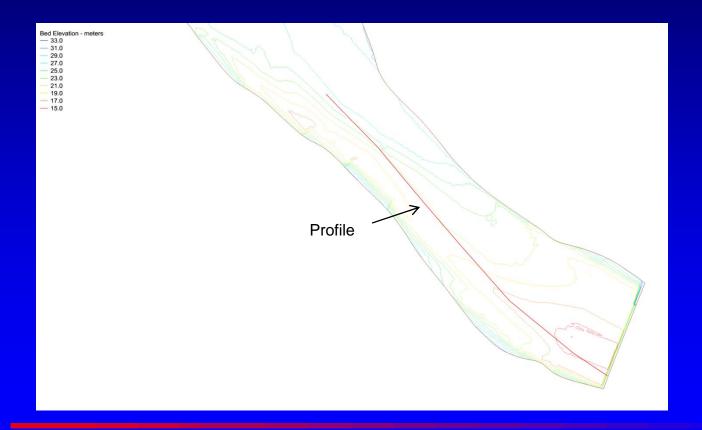
US Army Corps of Engineers

SEDIMENT MANAGEMENT SCENARIOS

Agitation Dredging

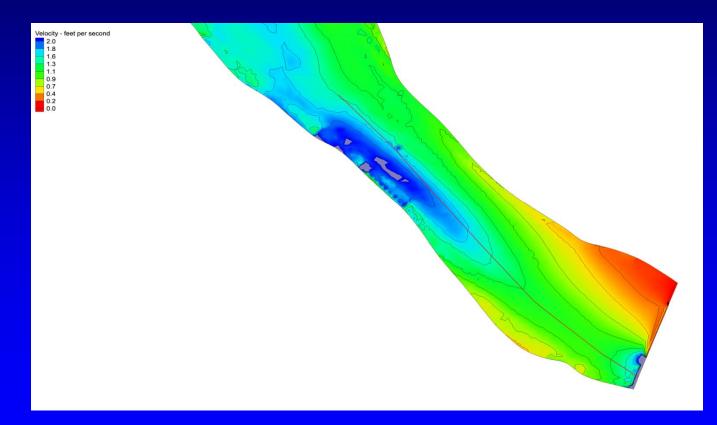
Goal: Transport bed sediments through the dam by re-suspending reservoir bed sediments through agitation dredging

Analysis Method

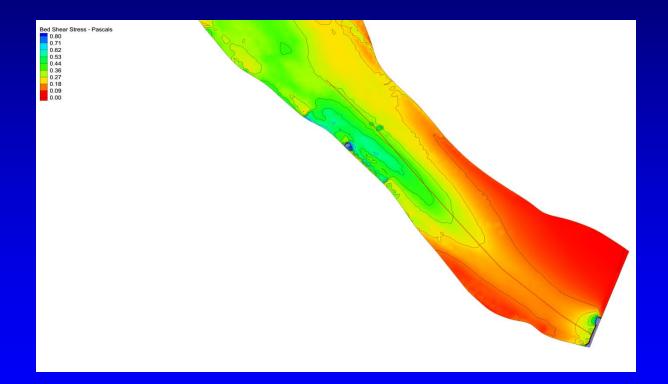

- Used the 2D model to Compute bed shear stress for varying flows through Conowingo
- Computed shear velocity to evaluate turbulence required to maintain sediment in suspension
- Computed percentage of sediment remaining in suspension as a function of flow

US Army Corps of Engineers

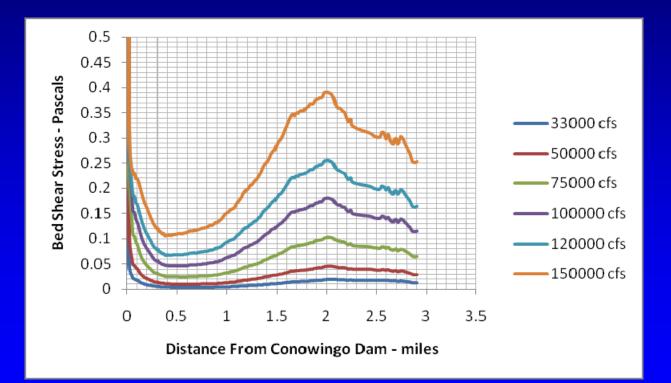
SEDIMENT MANAGEMENT SCENARIOS


Analysis Profile Through Lower Reservoir

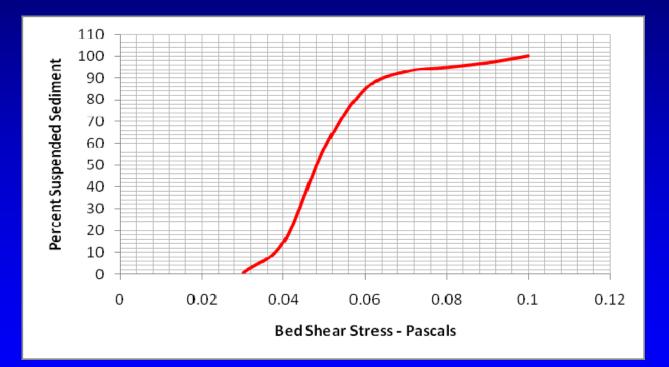
SEDIMENT MANAGEMENT SCENARIOS


Velocity Profile Through Lower Reservoir – 150,000 cfs

SEDIMENT MANAGEMENT SCENARIOS


Bed Shear Stress Profile Through Lower Reservoir – 150,000 cfs

SEDIMENT MANAGEMENT SCENARIOS


Bed Shear Stress as a Function of Flow Through Lower Reservoir – 150,000 cfs

SEDIMENT MANAGEMENT SCENARIOS

Percent of Suspended Sediment as a Function of Bed Shear Stress

SEDIMENT MANAGEMENT SCENARIOS

Percent Suspended Sediment as a Function of Flow

Flow Event – cubic feet per second	Percent Suspended Sediment		
33,000	0.0		
50,000	0.0		
75,000	1.0		
100,000	58.0		
120,000	92.0		
150,000	100.0		

Conclusion: A minimum Discharge of 150,000 cfs is Required To insure Transport of Agitated Sediment Through the Dam

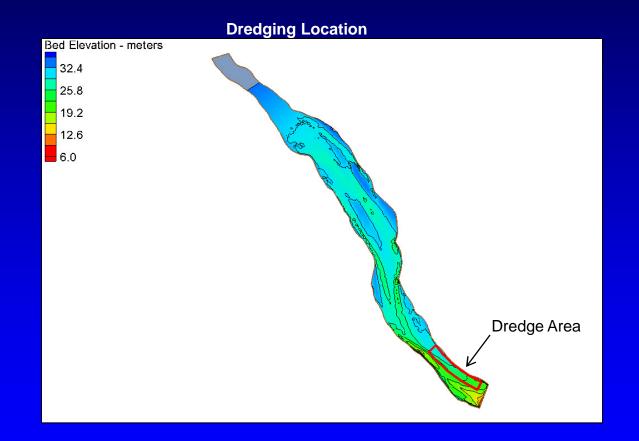
Flows \geq 150,000 cfs occur on the average 12 days per year

US Army Corps of Engineers

SEDIMENT MANAGEMENT SCENARIOS

Dredging

Goal: Reduce Scour Potential and Increase Sedimentation in reservoir


Analysis Method

- Used the 2D model to Compute Sediment Transport Through Conowingo with Current (2011) bathymetry for 2008 2011 Susquehanna River Flows
- Remove 3 million cubic yards from depositional area 1.0 1.5 miles above the dam
- Re- Compute Sediment Transport with dredged area
- Compare simulation results (2011 bathymetry vs 2011 bathymetry with dredged area)

US Army Corps of Engineers

SEDIMENT MANAGEMENT SCENARIOS

SEDIMENT MANAGEMENT SCENARIOS

Dredging

Results For Dredging 3 million Cubic Yards:

- Dredging Results in a 3 percent reduction in scour (2.98 million tons to 2.71 million tons) over the four year flow record
- Dredging Results in a 6 percent increase in sedimentation (4.02 to 4.28 million tons)

US Army Corps of Engineers

Sediment Bypassing Analysis

GOAL

Evaluate the impact of sediment bypassing operations on water quality below Conowingo Dam

ANALYSIS SCENARIOS

- 2.4 million tons bypassed over 3 months time (90 days)
- 2.4 million tons bypassed over 9 months time (270 days)

US Army Corps of Engineers

Sediment Bypassing Analysis

Two Components of Bypass Stream

- 1. Dredged material slurry discharge below Conowingo Dam
- 2. Susquehanna River flow through the dam

Assumptions

- Mean winter Susquehanna River flow of 60,000 cfs
- Suspended sediment concentration of 12 mg/l in river
- Dredged material consisting of 20% Sand, 72% Silt, 8% clay
- Steady state flow conditions
- Average concentration by weight in dredge slurry of six percent
- Average bed density of 1600 kg / cubic meters

Sediment Bypassing Analysis

Impact on Suspended Sediment Load Below Dam:

- Increase in suspended sediment concentration from 12 to 176 mg/l for 90 day bypassing operation
- Increase in suspended sediment concentration from 12 to 66 mg/l for 270 day bypassing operation

Summary of AdH 2D Model Runs 2008 – 2011 Simulation

Bathymetry	Inflow Load	Outflow Load	Scour Load	Net Deposition
1996	26.3	20.3	1.8	6.0
2008	26.3	21.9	2.9	4.4
2011	26.3	22.3	3.0	4.0
Full Condition	26.3	22.2	3.0	4.1
2011 Dredge 3 mcy	26.3	22.0	2.7	4.3

All Loads in Millions of Tons

Note: 31 million cubic yards of sediment (25 million tons) deposited in Conowingo from 1996 to 2011 Outflow load contains watershed load plus scour load

Summary of AdH 2D Model Runs 2008 – 2011 Simulation

TS Lee Statistics – Loads out of Conowingo

Bathymetry	Outflow Load	Total Lee load	Lee percent of outflow	Scour Load	Scour percent of Lee
1996	20.3	13.1	65	1.8	14
2008	21.9	14.4	66	2.9	20
2011	22.3	14.5	65	3.0	21
Full Condition	22.2	14.6	66	3.0	21
2011 Dredged 3 mcy	22.0	14.2	65	2.7	19

All Loads in Millions of Tons

Note: Total Lee outflow load consists of inflowing load plus bed scour load

SUMMARY

For the Period or Record Simulated (2008 – 2011):

- Scour in Conowingo increased from 1.8 to 3 million tons from 1996 - 2011
- Deposition in Conowingo decreased from 6 to 4 million tons from 1996 – 2011
- Comparison of the 2011 simulation to the full condition simulation indicates very little change in sediment transport near full capacity
- Dredging 3 million cubic yards resulted in a scour reduction of 10 percent (3 percent per million cubic yards removed)
- Dredging 3 million cubic yards resulted in a 1.3 percent reduction of outflow load to the bay (0.44 percent per million cubic yards removed)

US Army Corps of Engineers

SUMMARY OF TS LEE STATISTICS

For the Period or Record Simulated (2008 – 2011):

- TS Lee contributed 65 percent of the Conowingo Dam outflow load (Inflowing load and scour load)
- Bed scour during TS Lee comprised approximately 20 percent of the total TS Lee load, with 80 percent the inflowing load from the watershed

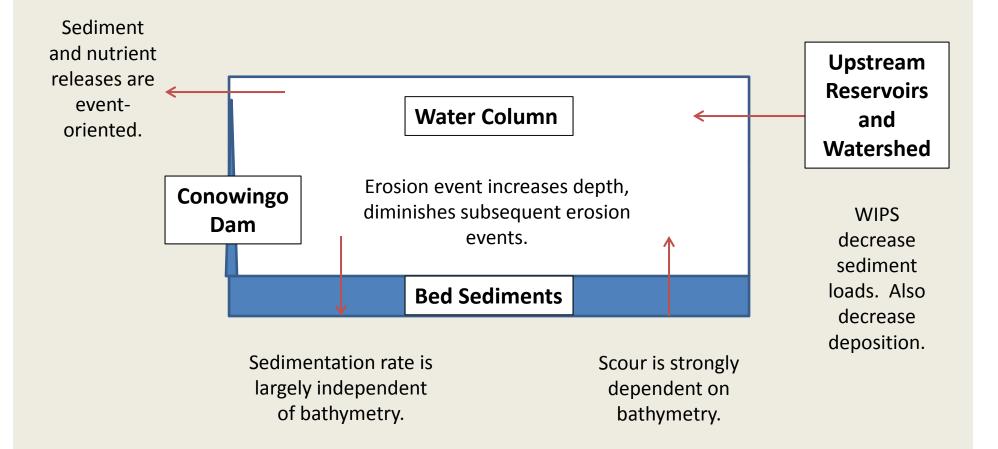
CONCLUSIONS BASED ON MODELING RESULTS

For the Period or Record Simulated (1996 – 2011):

Based on comparisons between the 1996 and 2011 simulations:

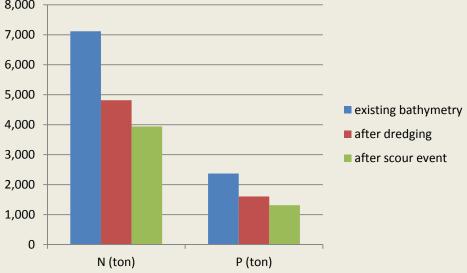
- For every million cubic yards dredged, the scour potential is reduced by three percent and the deposition potential increases by six percent
- Net benefit of dredging to the Bay is reduction of scour plus increase in reservoir sedimentation
- Dredging reservoir back to 1996 conditions has a net benefit of 2 million tons or load reduction to the Bay of 9% (removal of 31 million cubic yards)

US Army Corps of Engineers

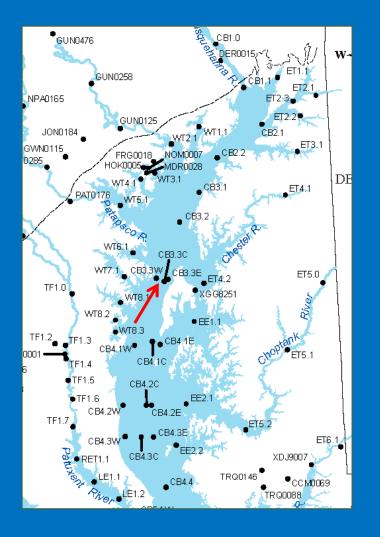

Status

- Nearly 30 scenarios completed for NAB and CBP over a year's effort.
- Report on application of CBEMP in preparation. October time frame for draft.
- Targeted management scenarios in progress:
 - Dredging, remove 3 mcy. Completed.
 - Dredging, remove 3 mcy with sediment bypass. Mid-September.
 - Dredging, remove 31 mcy, equivalent to 1996 bathymetry. Completed.

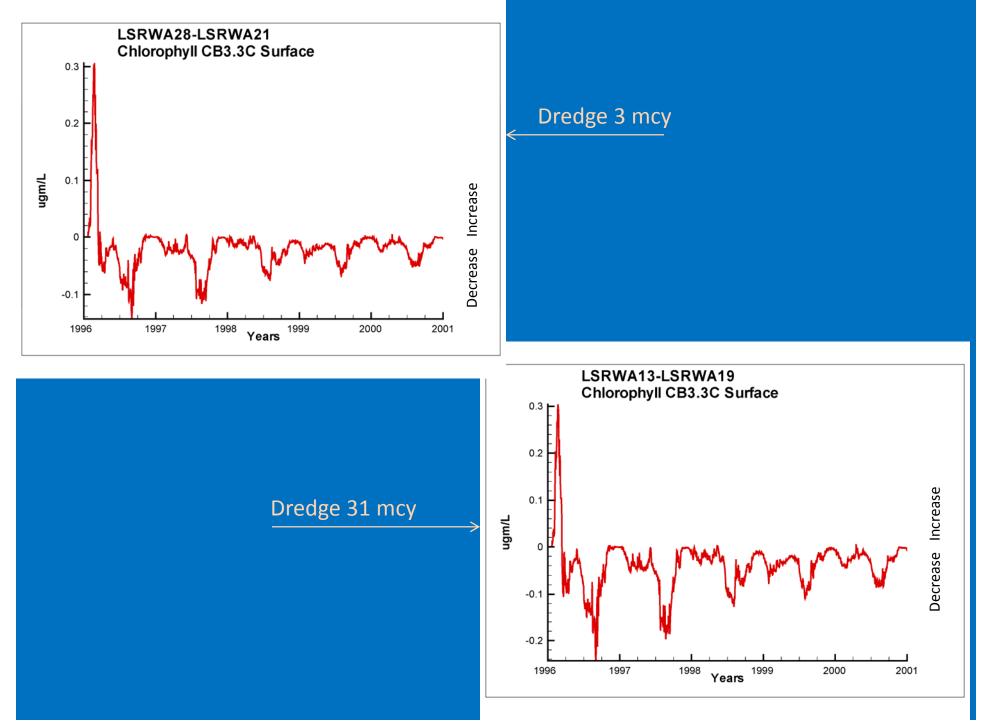

Scenario Procedure

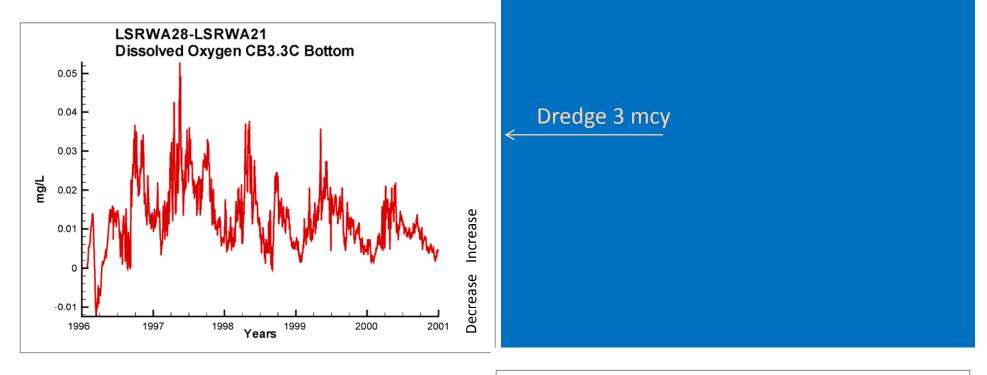

- The CBEMP is run for 1991 2001.
- Today's runs are based on Chesapeake Bay TMDL loadings.
- Loads from a major scour event in January 1996 are added to the WSM loads.
- Scour is computed by ADH applied to 2008 2011 hydrology including TS Lee. We obtain 1996 scour by a scaling procedure.
- Nutrient composition of solids is based on observations during TS Lee.

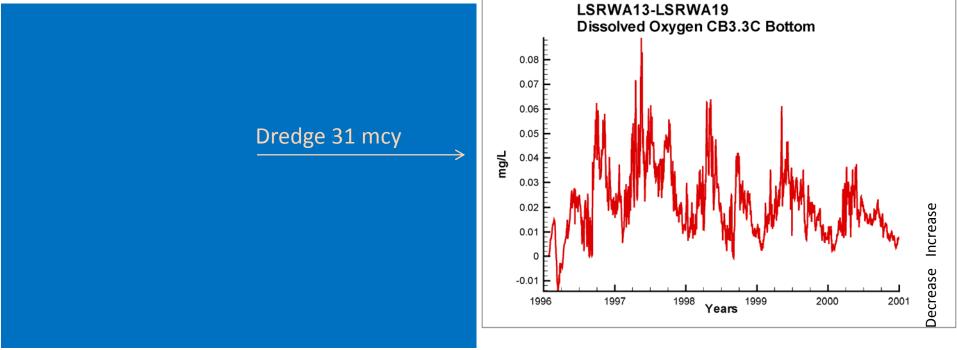
Conceptual Model of Sediment Movement through Conowingo Reservoir

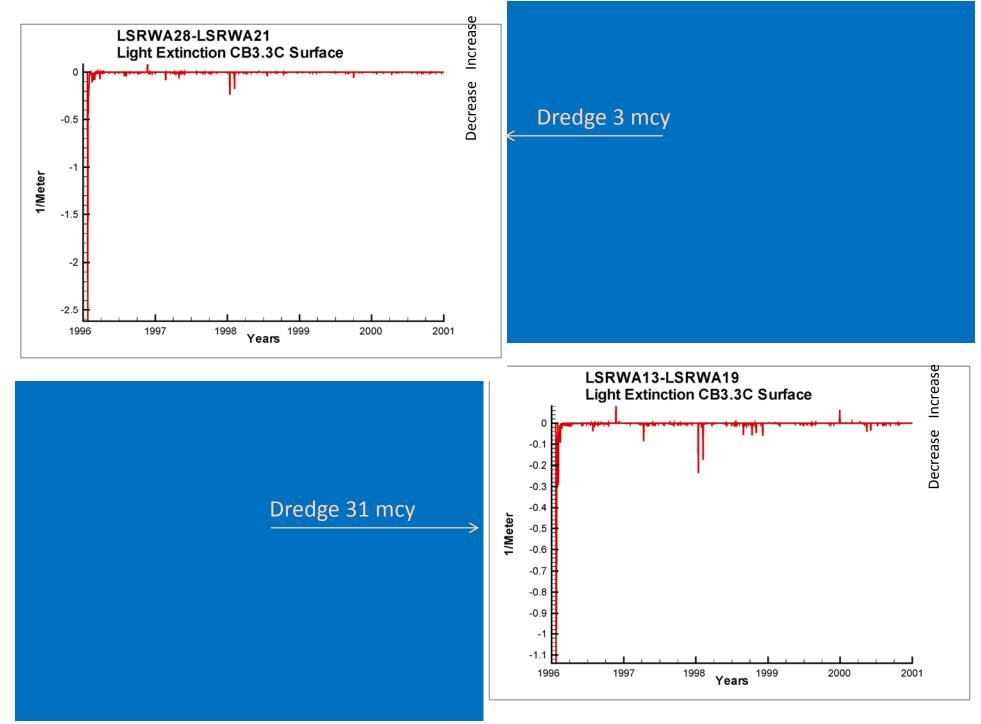


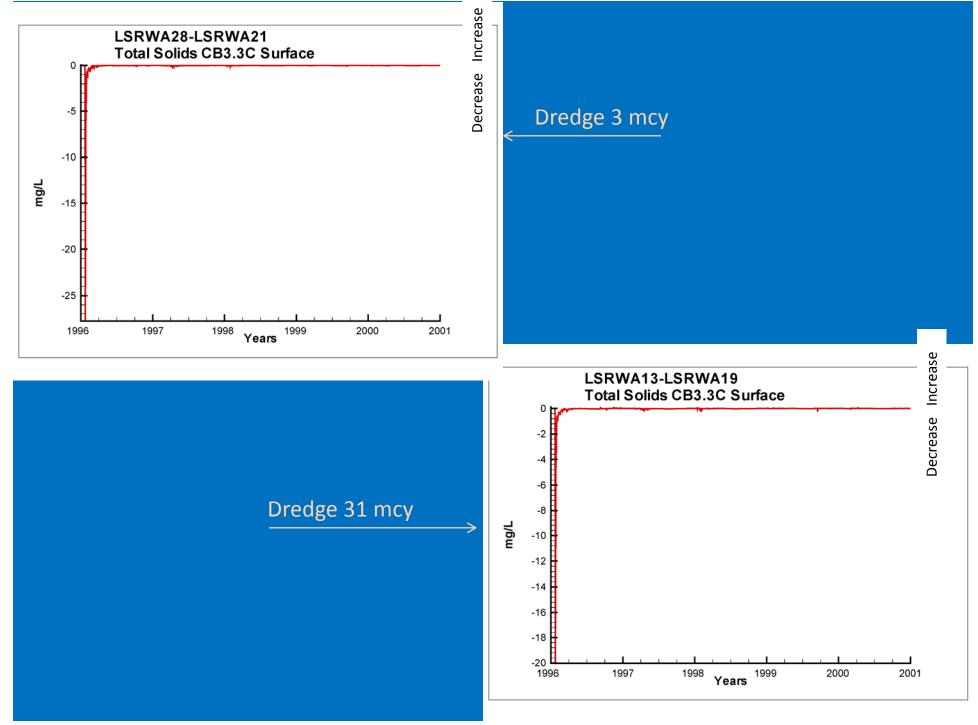
1996 Scour Loads for Three Bathymetries

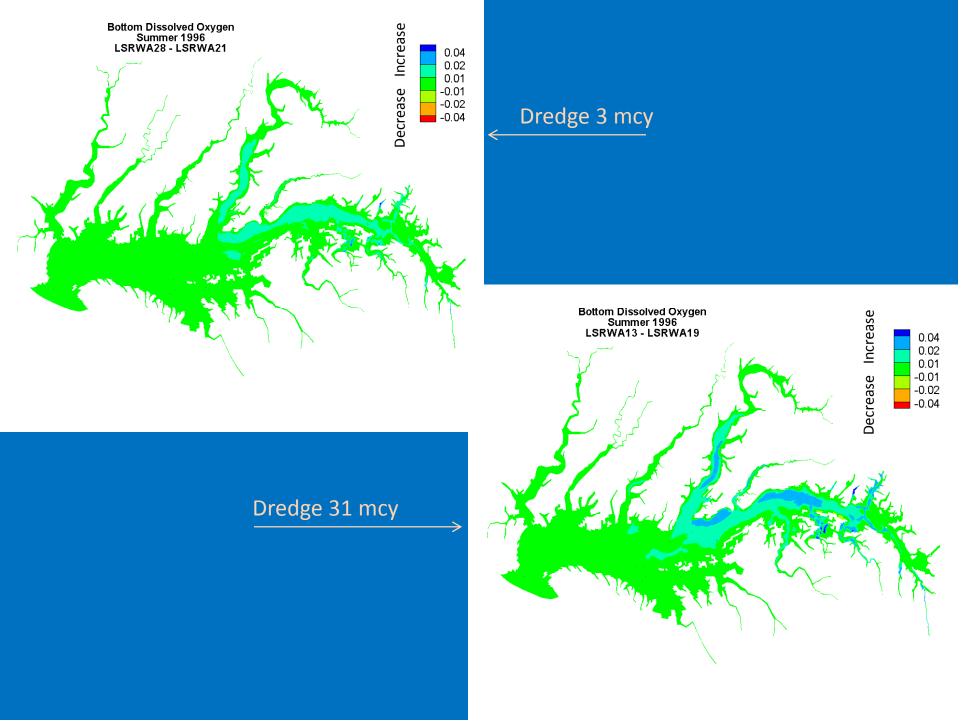


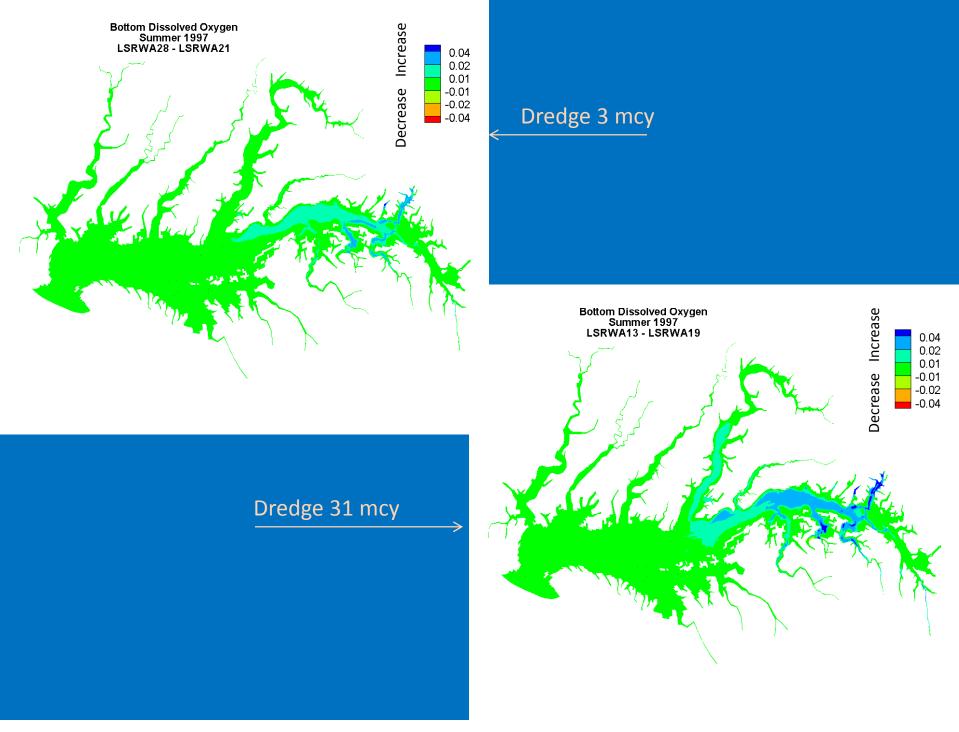


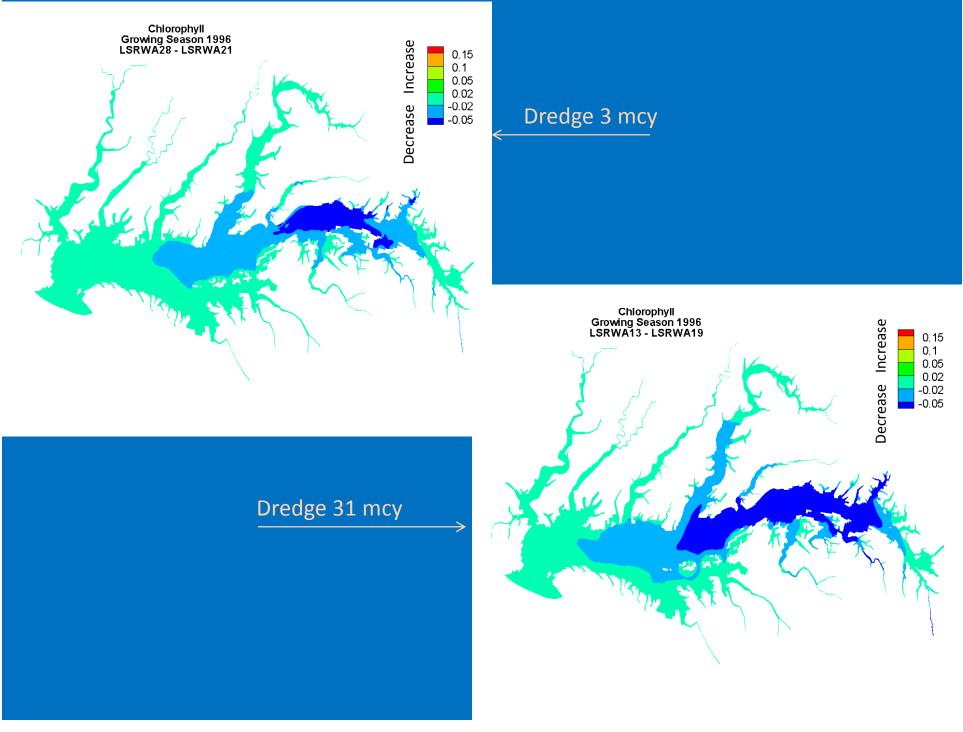

Model Results

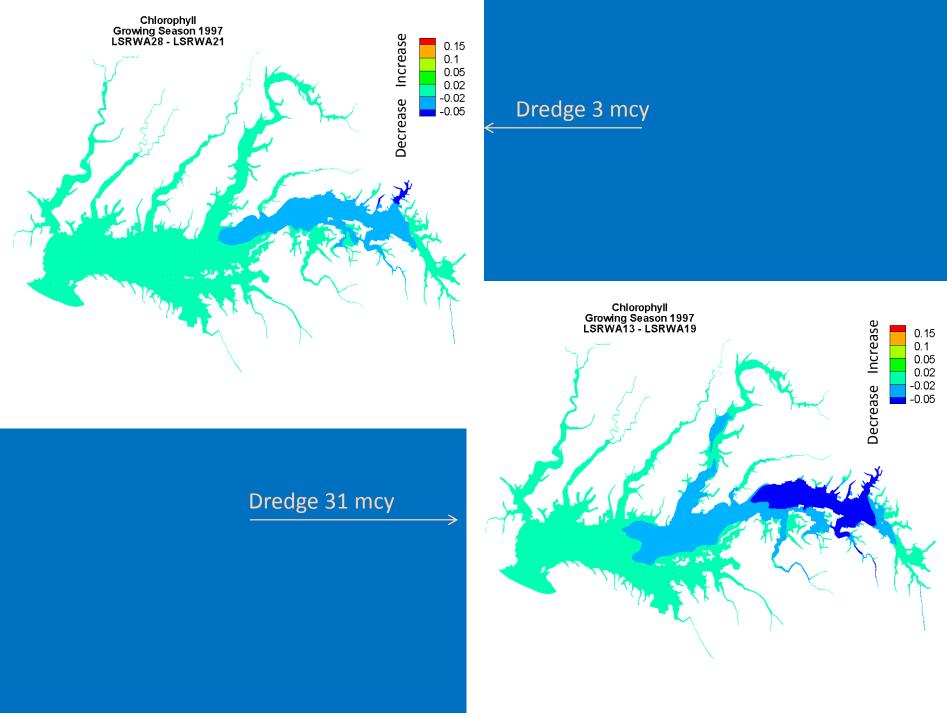


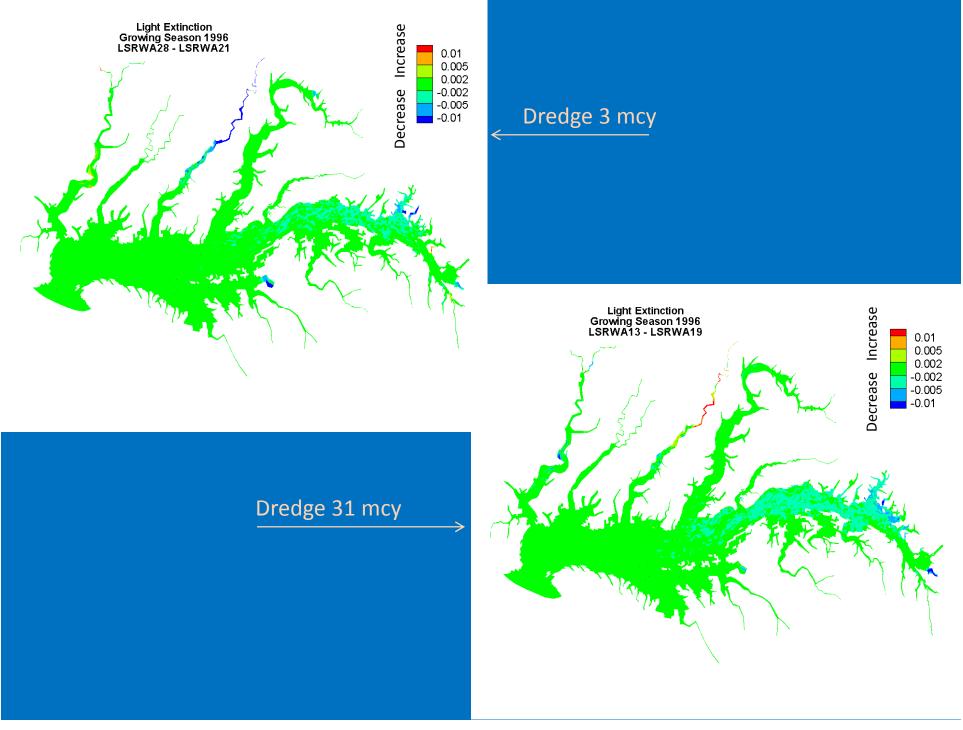

- We're going to concentrate on difference plots.
- Dredging 3 mcy (LSWRA28) – TMDL with existing bathymetry (LSRWA21).
- Dredging 31 mcy (LSRWA13) – TMDL with equilibrium bathymetry (LSWRA19).

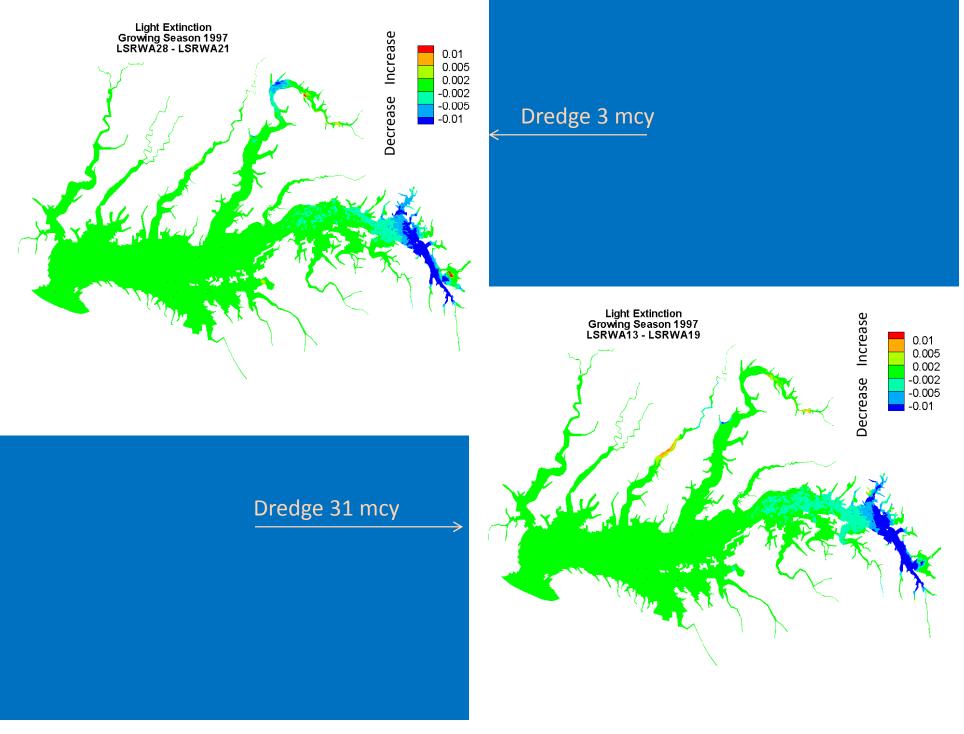












Conclusions

- Dredging 3 mcy will improve summer-average bottom DO in the deep trench of the bay, Potomac River, and Baltimore Harbor by 0.02 to 0.04 mg/L based on a 1996 scour event.
- Dredging 31 mcy will improve summeraverage bottom DO in the deep trench of the bay, Potomac River, and Baltimore Harbor by 0.04 to 0.06 mg/L based on a 1996 scour event.

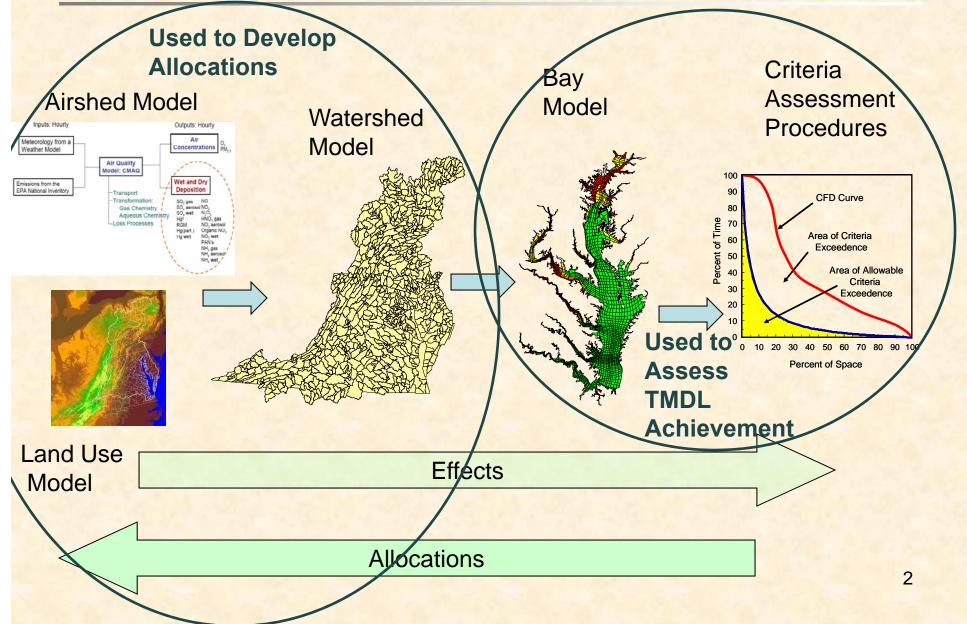
Conclusions

- Dredging 3 mcy will reduce SAV growing-season chlorophyll by 0.02 to 0.05 in a large expanse of the bay, extending from Baltimore harbor past the mouth of the Potomac River, based on a 1996 scour event.
- The magnitude of chlorophyll reduction from dredging 31 mcy is comparable to dredging 3 mcy, based on a 1996 scour event. The improvement is more extensive and prolonged, however.

Conclusions

- Improvements in SAV growing-season light attenuation obtained by dredging are limited, generally less than 0.01 / m.
- These results are influenced by the timing of the scour event, January 1996. Most solids have settled out by the subsequent SAV growing season.

DO Water Quality Standard Stoplight Analysis of the Estimated Influence of Conowingo Infill on Chesapeake DO Using Linked WSM, ADH, and WQSTM Simulations


> Lower Susquehanna River Watershed Assessment Quarterly Team Meeting

> > August 15, 2013

Lewis Linker and the CBP Modeling Team <u>linker.lewis@epa.gov</u>

Nutrient Allocation Decision Support System

Water Quality Standards of Deep Water, Deep Channel, Open Water, and Shallow Water **Dissolved Oxygen** (DO) are key for protection of living resources. Chlorophyll and SAV/clarity standards are also designed to protect living resources.

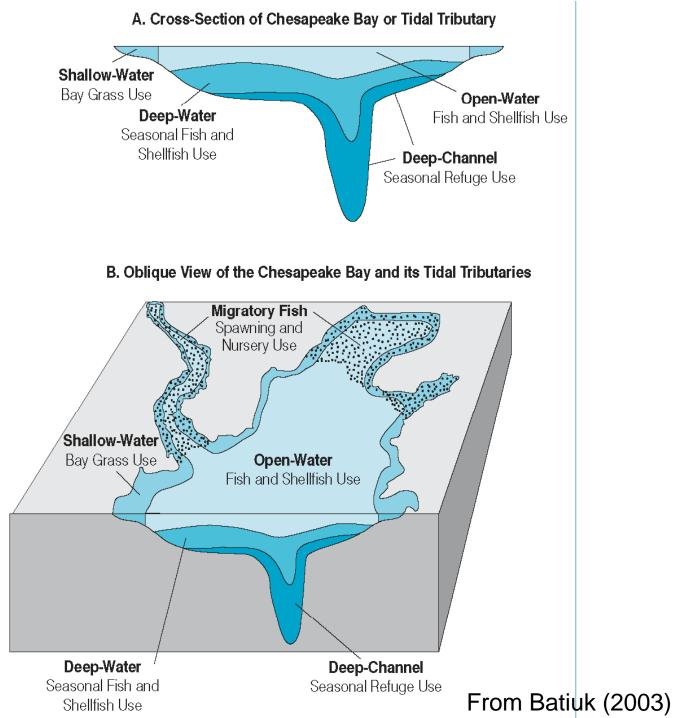
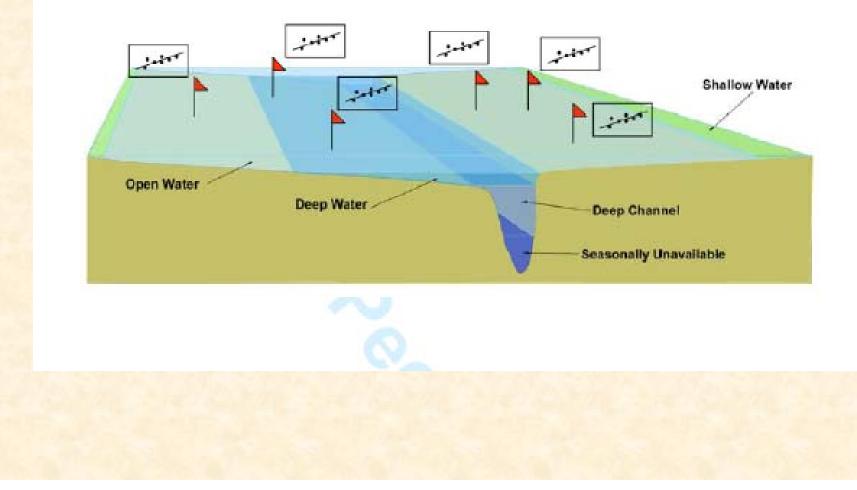



FIGURE 3: An individual regression equation is generated for each monitoring station and month. For DO, a regression equation is generated for each WQSTM cell that is matched to a vertical profile of monitoring observations. For CHL, a single equation is generated for the surface cell, which corresponds to a surface CHL monitoring observation.

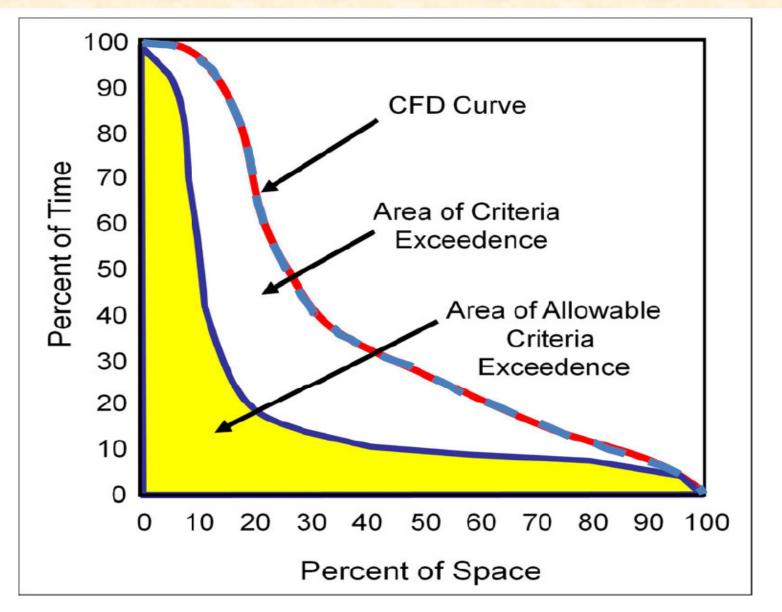


Figure 4. The analysis applied for each TMDL CB segment to determine the percent of time and space that the simulated Chesapeake Bay water quality results exceed the allowable concentration (USEPA 2003; 2008; 2010a).

Scenarios Used in April, 2013 Analysis*

- 2010 No Action N-Based
- 1985 Scenario
- Base Case Calibration
- 2007 Progress
- 2009 Progress
- 2010 Progress
- 2010 Progress w/ simulated deposition and scour of the Conowingo reservoir removed from WSM loads.
- 2010 Progress w/ 0% N, 50% P, 100% TSS increase in annual loads
- 2010 Progress w/ 0% N, 70% P, 250% TSS increase in annual loads
- TMDL (Level of Effort)
- TMDL (LoE) w/ simulated deposition and scour of the Conowingo reservoir removed from WSM loads.
- TMDL (LoE) w/ 0% N, 50% P, 100% TSS increase in annual loads
- TMDL (LoE) w/ 0% N, 70% P, 250% TSS increase in annual loads
- 2010 E3 N-Based
- All Forest

* All scenarios are based on Phase 5.3.2 loads.

Scenarios Examined in This Analysis*

- •TMDL (Level of Effort)
- TMDL w/ ADH Scour and Hurricane Lee Level of Scoured Particulate Organic Nutrients in January 1996
- TMDL w/ ADH Scour and 1996 Big Melt Level of Scoured Particulate Organic Nutrients in January 1996
- •January 1996 Big Melt Storm Eliminated
- TMDL w/ ADH Scour and Hurricane Lee Level of Scoured Particulate Organic Nutrients w/ January Storm Moved to June
- TMDL w/ ADH Scour and Hurricane Lee Level of Scoured Particulate Organic Nutrients w/ January Storm Moved to <u>October</u>
- TMDL w/ ADH Scour and 1996 Big Melt Level of Scoured Particulate Organic Nutrients w/ January Storm Moved to June
- TMDL w/ ADH Scour and 1996 Big Melt Level of Scoured Particulate Organic Nutrients w/ January Storm Moved to <u>October</u>

For Comparison:

- 2010 E3 N-Based
- All Forest

* All scenarios are based on Phase 5.3.2 loads.

DO Stoplight Decision Rules:

• Applied standard Phase I & II Allocation decision rules of rounding to the nearest whole number of nonattainment and allowing 1% nonattainment for uncertainties in overall analysis procedure.

• A CB4MH and PATMH Deep Water variance of 7%.

• A CB4MH and EASMH Deep Channel variance of 2%.

• A CHSMH Deep Chanel variance of 16%.

When we used the WSM alone to represent scour from the infill state of the Conowingo we set the loads to 100%, 50%, and 0% above Conowingo base to represent loads at the estimated current level of Conowingo infill for TSS, TP, and TN respectively*.

1991

We get a more realistic estimate of the influence Conowingo infill has on Chesapeake water quality using a linked simulation of the WSM and ADH to represent the episodic scour that occurs at flows greater than ~400,000 cfs.

2000

1991

January1996

2000

*Source: Hirsch, R.M., 2012, Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the 9 effects of reservoir sedimentation on water quality: U.S. Geological Survey Scientific Investigations Report 2012–5185, 17 p.

Where we were in April 2013 when we were using the WSM alone to represent Conowingo infill at 100% TSS increase (estimated current 90% Conowingo infill) and 250% TSS increase (estimated completely filled Conowingo pool).

	Scenario →	2010 No Action N-Based Scenario 371 TN, 37.6 TP, 10630TSS	1985 Scenario 353 TN, 24.6 TP, 10100 TSS	'91 -'00 Base Scenario 318 TN, 20.3 TP, 9440 TSS	2007 Scenario 269 TN, 19.5 TP, 8770 TSS	2009 Scenario 266 TN, 19.1 TP, 8520 TSS	2010 Scenario 263 TN 19.4 TP 8360 TSS	2010 No Conowingo 272 TN 20 TP 9263 TSS	2010 scour100%	2010 scour250%	TMDL Scenario 191 TN 15 TP 6675 TSS	TMDL No Conowingo 200 TN 15 TP 7394 TSS	TMDL scour100%	TMDL scour250%	E3 2010 N-Based Scenario 135 TN, 10.4 TP, 4850 TSS	All Forest Scenario 54 TN, 2.6 TP, 1340 TSS
	$\textbf{Year} \rightarrow$	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep	'93-'95 DO Deep
Cbseg	State	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel
CB3MH	MD	22%	17%	14%	12%	11%	5%	7%	8%	7%	0%	0%	0%	0%	0%	0%
CB4MH	MD	54%	49%	46%	40%	38%	23%	26%	30%	30%	1.49%	2.73%	3.39%	4.25%	0%	0%
CB5MH	both	22%	17%	15%	10%	9%	0%	1%	2%	3%	0%	0%	0%	0%	0%	0%
CHSMH	MD	45%	39%	39%	36%	36%	28%	34%	31%	34%	15.01%	15.66%	15.66%	18.81%	5%	0%
EASMH	MD	38%	29%	27%	24%	24%	14%	15%	17%	16%	1.09%	2.49%	3.73%	5.33%	0%	0%
MD5MH	MD	31%	25%	24%	19%	17%	2%	4%	8%	8%	0%	0%	0%	0%	0%	0%
PATMH	MD	46%	42%	28%	25%	25%	18%	24%	23%	23%	0%	0%	0%	0%	0%	0%
POMMH	MD	27%	20%	20%	13%	10%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
POTMH	both	27%	20%	20%	13%	10%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
RPPMH	VA	29%	23%	19%	6%	4%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
VA5MH	VA	12%	7%	4%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

									E3 2010	
	TMDL								N-Based	All Forest
	Scenario	LSRWA_21	LSRWA_22				LSRWA_26	LSRWA_27	Scenario	Scenario
	191 TN	TMDL ADH	ADH scour			LSRWA_25	June storm	October	135 TN,	54 TN,
	15 TP	scour Lee	1996	LSRWA_23	LSRWA_24	October	1996	storm 1996	10.4 TP,	2.6 TP,
Scenario	6675 TSS	nutrient	nutrient	No storm	June storm	storm	nutrient	nutrient	4850 TSS	1340 TSS
Year	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995
Designated	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
use	channel	channel	channel	channel	channel	channel	channel	channel	channel	channel
СВЗМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0%	0%
CB4MH	1.53%	1.52%	1.52%	1.52%	1.52%	1.52%	1.52%	1.52%	0%	0%
CB5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0%	0%
CHSMH	15.01%	15.01%	15.01%	15.01%	15.01%	15.01%	15.01%	15.01%	2%	0%
РОТМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0%	0%
РОММН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0%	0%
RPPMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0%	0%
EASMH	1.09%	1.09%	1.09%	1.09%	1.09%	1.09%	1.09%	1.09%	0%	0%
MD5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0%	0%
VA5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0%	0%
PATMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0%	0%

									E3 2010	
	TMDL								N-Based	All Forest
	Scenario	LSRWA_21	LSRWA_22				LSRWA_26	LSRWA_27	Scenario	Scenario
	191 TN	TMDL ADH	ADH scour			LSRWA_25	June storm	October	135 TN,	54 TN,
	15 TP	scour Lee	1996	LSRWA_23	LSRWA_24	October	1996	storm 1996	10.4 TP,	2.6 TP,
Scenario	6675 TSS	nutrient	nutrient	No storm	June storm	storm	nutrient	nutrient	4850 TSS	1340 TSS
Year	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998
Designated	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
use	channel	channel	channel	channel	channel	channel	channel	channel	channel	channel
СВЗМН	1.10%	1.40%	1.09%	0.40%	1.47%	0.50%	1.47%	0.50%	0.00%	0.00%
CB4MH	0.47%	1.56%	0.73%	0.07%	3.85%	0.20%	2.53%	0.17%	0.00%	0.00%
CB5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CHSMH	4.13%	5.27%	5.27%	2.84%	10.50%	5.27%	10.50%	4.13%	2.06%	0.00%
РОТМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
РОММН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RPPMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
EASMH	6.09%	6.75%	6.36%	4.46%	7.81%	5.19%	7.41%	5.14%	0.00%	0.00%
MD5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
VA5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
РАТМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

									E3 2010	
	TMDL								N-Based	All Forest
	Scenario	LSRWA_21	LSRWA_22				LSRWA_26	LSRWA_27	Scenario	Scenario
	191 TN	TMDL ADH	ADH scour			LSRWA_25	June storm	October	135 TN,	54 TN,
	15 TP	scour Lee	1996	LSRWA_23	LSRWA_24	October	1996	storm 1996	10.4 TP,	2.6 TP,
Scenario	6675 TSS	nutrient	nutrient	No storm	June storm	storm	nutrient	nutrient	4850 TSS	1340 TSS
Year	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000
Designated	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
use	channel	channel	channel	channel	channel	channel	channel	channel	channel	channel
СВЗМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CB4MH	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CB5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CHSMH	26.46%	26.46%	26.46%	22.31%	26.46%	26.46%	26.46%	26.46%	1.28%	0.00%
РОТМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
POMMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RPPMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
EASMH	1.56%	1.61%	1.56%	1.39%	1.59%	1.57%	1.56%	1.56%	0.00%	0.00%
MD5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
VA5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
PATMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Initial DO Findings – Deep Channel:

• The linked WSM-ADH-WQSTM simulation is an improved representation of the dynamic nature of Conowingo scour. No effects of Conowingo are seen before a 400,000 cfs storm, with greatest influence on water quality estimated during the contiguous 3-year period containing the storm, and a subdued to no-effect influence in the subsequent 3-year period.

• Estimates with the refined method are less detrimental in time and space than previous (April 2013) estimates)

• In CB4MH Deep Channel the estimated effect of the 400 cfs event of the January 1996 Big Melt was a decrease in DO attainment of 1% or less for the 3 years following the storm (using the 1996-1998 hydrology).

Initial DO Findings – Deep Channel:

• The No-Storm Scenario Provides an estimate of the "large storm tax" on the CBP TMDL.

• The Big Melt event transposed to June is the most detrimental to DO water quality followed in decreasing influence by the January event, the October event, and the No-Storm event.

DO Deep Water

Where we were in April 2013 when we were using the WSM alone to represent Conowingo infill at 100% TSS increase (estimated current 90% Conowingo infill) and 250% TSS increase (estimated completely filled Conowingo pool).

	Scenario → Year →	2010 No Action NBased Scenario 371 TN, 37.6 TP, 10630TSS '93-'95 DODeep	1985 Scenario 353 TN, 24.6 TP, 10100 TSS '93-'95 DODeep	'91-'00 Base Scenario 318 TN, 20.3 TP, 9440 TSS '93-'95 DODeep	2007 Scenario 269 TN, 19.5 TP, 8770 TSS '93-'95 DODeep	2009 Scenario 266 TN 19.1 TP, 8520 TSS '93-'95 DODeep	2010 Scenario 263 TN 19.4 TP 8360 TSS '93-'95 DODeep	2010 No Conowingo 272 TN 20 TP 9263 TSS '93-'95 DODeep	2010 scour100% '93-'95 DODeep	2010 scour250% '93-'95 DODeep	TMDL Scenario 191 TN 15 TP 6675 TSS '93-'95 DODeep	TMEL No Conowingo 200 TN 15 TP 7394 TSS '93-'95 DODeep	TMEL scour100% '93-'95 DO Deep	TMDL scour250% '93-'95 DODeep	E3 2010 NBased Scenario 135 TN 10.4 TP, 4850 TSS '93-'95 DODeep	All Forest Scenario 54 TN, 26 TP, 1340 TSS 93-95 DODeep
Cbæg	State	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
CB3IVH	MD	4%	2%	2%	2%	2%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
CB4MH	MD	28%	22%	20%	17%	16%	11%	11%	12%	12%	4.7%	5.5%	5.7%	5.9%	3%	0%
CB5MH	both	7%	5%	4%	3%	3%	2%	2%	2%	2%	0%	0%	0%	0%	0%	0%
CB6PH	VA	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
CHSIMH	MD	39%	32%	26%	21%	19%	11%	13%	13%	13%	0%	27%	3.3%	3.9%	1%	0%
EASIMH	MD	34%	14%	6%	4%	4%	2%	2%	2%	2%	0.90%	1.2%	1.1%	11%	0%	0%
MD5MH	MD	14%	10%	9%	7%	7%	4%	4%	5%	5%	0.86%	1.2%	1.3%	1.5%	0%	0%
PATTMH	MD	31%	21%	13%	11%	11%	6%	9%	7%	7%	0%	0.9%	10%	10%	0%	0%
PAXIVH	MD	23%	12%	7%	4%	3%	0%	1%	4%	3%	0%	0%	0%	0%	0%	0%
POIVMH	MD	10%	5%	4%	2%	2%	0%	1%	1%	1%	0%	0%	0%	0%	0%	0%
POTTVH	both	9%	5%	4%	2%	2%	0%	1%	1%	1%	0%	0%	0%	0%	0%	0%
RPPINH	VA	13%	8%	6%	3%	1%	0%	0%	1%	1%	0%	0%	0%	0%	0%	0%
SBEIVH	VA	5%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
VA5IVH	VA	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
YRKPH	VA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

DO Deep Water

									E3 2010	
	TMDL						LSRWA_26	LSRWA_27	N-Based	All Forest
	Scenario	LSRWA_21	LSRWA_22				June	October	Scenario	Scenario
	191 TN	TMDL ADH	ADH scour		LSRWA_24	LSRWA_25	storm	storm	135 TN,	54 TN,
	15 TP	scour Lee	1996	LSRWA_23	June	October	1996	1996	10.4 TP,	2.6 TP,
Scenario	6675 TSS	nutrient	nutrient	No storm	storm	storm	nutrient	nutrient	4850 TSS	1340 TSS
Years	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995	1993-1995
Designated	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
use	water	water	water	water	water	water	water	water	water	water
СВЗМН	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.0%	0.0%
CB4MH	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	0.9%	0.0%
СВ5МН	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.0%	0.0%
СВ6РН	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
СВ7РН	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
EASMH	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.0%	0.0%
РАХМН	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
РОТМН	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
РОММН	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
RPPMH	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SBEMH	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
YRKPH	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
MD5MH	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	0.0%	0.0%
VA5MH	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
РАТМН	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.0%	0.0%
SOUMH	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SEVMH	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
- Contraction		- Company		- Comercia		- Constant		- Company		17

DO Deep Water

									E3 2010	
	TMDL						LSRWA_26	LSRWA_27	N-Based	All Forest
	Scenario	LSRWA_21	LSRWA_22				June	October	Scenario	Scenario
	191 TN	TMDL ADH	ADH scour		LSRWA_24	LSRWA_25	storm	storm	135 TN,	54 TN,
	15 TP	scour Lee	1996	LSRWA_23	June	October	1996	1996	10.4 TP,	2.6 TP,
Scenario	6675 TSS	nutrient	nutrient	No storm	storm	storm	nutrient	nutrient	4850 TSS	1340 TSS
Years	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998
Designated	Deep	Deep	Deep							
use	water	water	water							
СВЗМН	0.69%	0.92%	0.77%	0.69%	0.91%	0.72%	0.69%	0.69%	0.02%	0.00%
CB4MH	6.33%	6.83%	6.44%	5.96%	7.46%	6.25%	7.12%	6.09%	2.99%	0.00%
СВ5МН	0.48%	0.53%	0.50%	0.44%	0.61%	0.47%	0.56%	0.46%	0.18%	0.00%
СВ6РН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СВ7РН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CHSMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
EASMH	0.49%	0.49%	0.49%	0.48%	0.54%	0.49%	0.54%	0.49%	0.28%	0.00%
РАХМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
РОТМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
РОММН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RPPMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
SBEMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
YRKPH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
MD5MH	1.37%	1.46%	1.41%	1.29%	1.62%	1.36%	1.52%	1.33%	0.48%	0.00%
VA5MH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
РАТМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
MAGMH	50.41%	0.00%	0.00%							
SOUMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
SEVMH	5.38%	5.38%	5.38%	4.39%	5.38%	5.38%	5.38%	5.38%	0.00%	0.80%

DO Deep Water

									E3 2010	
	TIVDL						LSRV/A_26	LSRV/A_27	N-Based	All Forest
	Scenario	LSRV/A_21	LSRV/A_22	:			June	October	Scenario	Scenario
	191 TN	TIVDLADH	ADHscour		LSRV/A_24	LSRV/A_25	storm	storm	135 TN,	54TN,
	15TP	scour Lee	1996	LSRV/A_23	June	October	1996	1996	10.4TP,	26TP,
Scenario	6675 TSS	nutrient	nutrient	Nostorm	storm	storm	nutrient	nutrient	4850TSS	1340TSS
Years	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000	1998-2000
Designated	Deep	Deep								
use	water	water								
CB3IVH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CB4IVH	4.61%	5.08%	4.72%	4.46%	4.82%	4.76%	4.65%	4.59%	0.50%	0.00%
CB5MH	0.02%	0.06%	0.02%	0.01%	0.08%	0.03%	0.02%	0.02%	0.00%	0.00%
CB6PH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СВ7РН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CH5MH	0.75%	0.75%	0.75%	0.75%	0.75%	0.75%	0.75%	0.75%	0.75%	0.00%
EASIMH	0.23%	0.23%	0.23%	0.23%	0.23%	0.23%	0.23%	0.23%	0.00%	0.00%
PAXIVH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
POTIVH	0.00%	0.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
POIVIVH	0.00%	0.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RPPIVH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
SBEIVH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
YRKPH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
MDSMH	0.41%	0.53%	0.41%	0.35%	0.44%	0.44%	0.41%	0.39%	0.00%	0.00%
VASIVH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
PATIVH	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.00%	0.00%
MAGMH	35.92%	35.92%	35.92%	35.92%	35.92%	35.92%	35.92%	35.92%	5.98%	0.00%
SOUMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
SEVIVH	6.78%	6.78%	6.78%	5.60%	6.78%	6.78%	6.78%	6.78%	0.00%	0.00%

Initial DO Findings – Deep Water:

• As in the case of Deep Channel, no effects of Conowingo infill are estimated before a 400,000 cfs storm event, with greatest influence on water quality estimated during the contiguous 3-year period containing the storm, and a subdued to no-effect influence in the subsequent 3-year period.

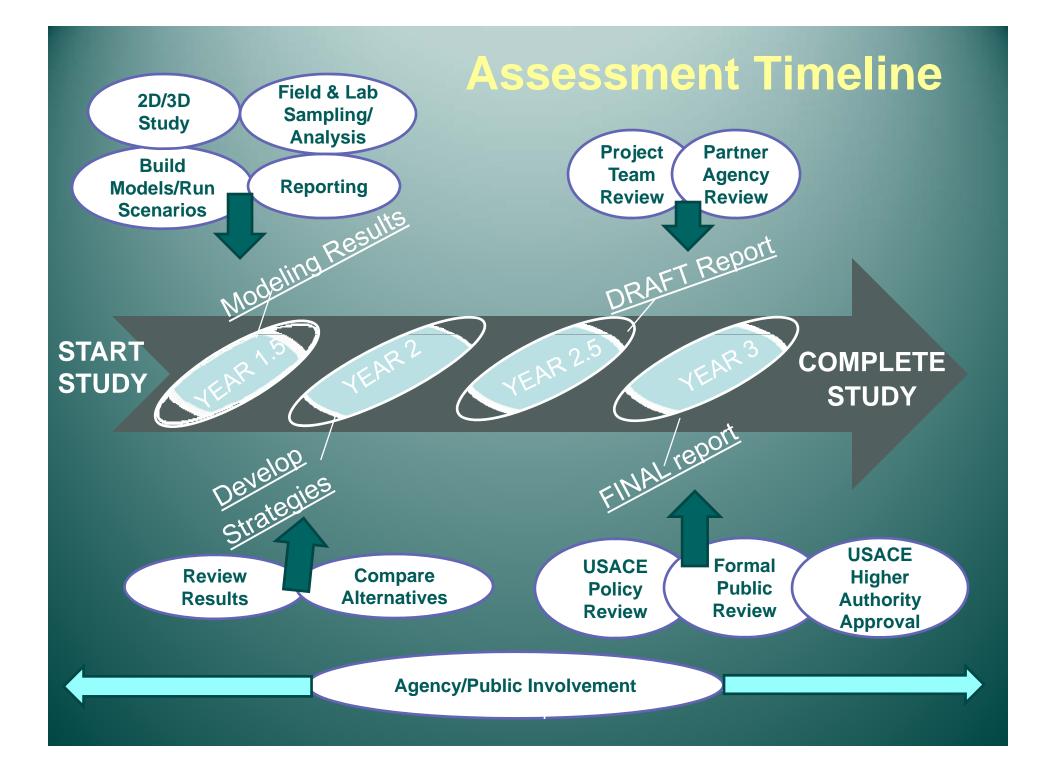
• Estimates with the refined method are less detrimental in time and space than previous (April 2013) estimates)

 In CB4MH Deep Water the estimated effect of the 400 cfs event of the January 1996 Big Melt was a decrease in DO attainment of 0.5% or less for the 3 years following the storm (using the 1996-1998 hydrology) followed by a decrease in DO attainment of about 0.4% in the subsequent 1998-2000 period.

Open Water

									E3 2010	
	TMDL								N-Based	All Forest
	Scenario	LSRWA_21	LSRWA_22				LSRWA_26	LSRWA_27	Scenario	Scenario
	191 TN 15	TMDL ADH	ADH scour			LSRWA_25	June storm	October	135 TN,	54 TN,
	TP 6675	scour Lee	1996	LSRWA_23	LSRWA_24	October	1996	storm 1996	10.4 TP,	2.6 TP,
Scenarios	TSS	nutrient	nutrient	No storm	June storm	storm	nutrient	nutrient	4850 TSS	1340 TSS
Years	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998	1996-1998
Designated	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open
Use	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
CB1TF	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СВ2ОН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СВЗМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СВ4МН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СВ5МН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СВ6РН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СВ7РН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CB8PH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CHOMH1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CHOMH2	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СНООН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CHOTF	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СНЅМН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
СНЅОН	0.00%	0.00%	0.00%	0.00%	0.20%	0.00%	0.20%	0.00%	0.00%	0.00%
CHSTF	0.00%	0.00%	0.00%	0.00%	0.72%	0.00%	0.72%	0.00%	0.00%	0.00%
EASMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
EBEMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
ELIPH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
JMSMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
JMSOH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
JMSPH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
JMSTF	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
JMSTFL	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
JMSTFU	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	.0,00%
LAFMH	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.00%
МОВРН	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Initial DO Findings – Open Water:


 Estimating an unchanged DO response and full attainment levels for Open Water DO at the TMDL level of reductions and for all Conowingo scoping scenarios.

Conclusions:

• These are refined findings compared to the previous April results.

 The prvious scoping scenarios of 100% and 250% scour fail to represent the dynamic nature of large storm scour and should be discounted as an unrealistic representation of Conowingo infill's influence on Chesapeake water quality

 The scour of Conowingo Pool under current infill conditions is estimated to have an ephemeral detrimental influence of at most about 1% nonattainment for a few years.

Schedule of Upcoming Activities

Modeling of Alternative Scenarios Sediment Management Strategy Development **Completion of Technical Studies** Completion of Draft Technical Appendices/Write-Ups **Development of Recommendations** Internal Draft Compiled Internal Team/Partner/Management Reviews USACE Agency Technical Review **USACE** Policy Compliance Review Public Release of Report Final Report Submitted to USACE Higher Authority

Jun-Sep 2013 Jun-Sep 2013 30 Sep 2013 11-15 Oct 2013 Oct-Nov 2013 Dec 2013 Jan-Feb 2014 Mar 2014 May-Jun 2014 Jul-Aug 2014 Sep 2014