Report on Nutrient Synoptic Survey in the Collington Branch, Northeast Branch, and Lottsford Branch Watersheds, Prince George's County, Maryland, April 2003 as part of the Watershed Restoration Action Strategy.

Maryland Department of Natural Resources Watershed Services Landscape and Watershed Analysis Management Studies November, 2003

Acknowledgements

This work was supported by the 2003 319(h) grant from U.S. Environmental Protection Agency # C9-00-3497-02-0.

This work supports Department of Natural Resources Outcomes – #2 Healthy Maryland watershed lands, streams, and non-tidal rivers. #3 A natural resources stewardship ethic for Marylanders. #4 Vibrant local communities in balance with natural systems.

Significant field collection assistance was provided by Jennifer Rusko Rebecca Zeiber, Matt Evans, and Kevin R. Coyne of MD Dept of Natural Resources, Watershed Services, Landscape and Watershed Analysis, Management Studies.

Cover photo: Collington Branch by Niles Primrose

Comments or questions about this report can be directed to : Niles L. Primrose MD Dept of Natural Resources Watershed Services Landscape and Watershed Analysis Management Studies.

nprimrose@dnr.state.md.us 410-260-8804

Executive Summary

A nutrient synoptic survey was conducted during April, 2003 in the Collington Branch, Northeast Branch, and Lottsford Branch watersheds as part of the Western Branch WRAS. Prince George's County personnel provided locations for 40 sampling sites within these three watersheds. Biological samples were requested from 24 of these sites. Nine sites were not sampled due to beaver or storm water control ponds (7), or map errors. Nitrate/nitrite concentrations were found to be baseline at all but one site. Nitrate/nitrite yields where baseline at all but two sites. Excessive concentration of orthophosphate where found in 2 subwatersheds, high concentrations in 1, moderate concentrations in 10, and the remainder below baseline. Orthophosphate yields were baseline throughout the watersheds. The elevated orthophosphate concentrations appear to be associated with systems that had fine suspended sediment loads lingering in the water column several days after rain events. No anomalies where found in the insitu measurements of dissolved oxygen and temperature. Specific conductivity and pH anomalies were found in 7 subwatersheds. Benthic macroinvertebrate communities at the eighteen sites sampled were poor to very poor. Fish communities at the four sites sampled would be considered poor. The degradation in the biotic community was attributed to degraded habitat associated with storm water flows.

Table of Contents

Page

Acknowledgements	i
Executive Summary	ii
List of Tables	iv
List of Figures	iv
Introduction	1
Methods	2
Results	3
Discussion	3
Conclusion	7
Literature Cited	16

List	of	Tab	les
LIDU	O1	I UU	

Page

Table 1. Nutrient Ranges and Ratings	1
Table 2. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
Station Locations	4
Table 3. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
Dissolved Nutrient Concentrations and Yields	6
Table 4. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
Insitu Water Quality Parameters	12
Table 5. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Macroinvertebrate Index of Biotic Integrity	15
Table 6. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS, September, 2003	
Fish Species Totals by Site	15
Table 7. Annual and Spring Nutrient Concentration Averages from Other	
Nutrient Synoptic Surveys	16
• • •	

List of Figures

Figure 1. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
Nutrient Synoptic Sites and Subwatersheds	5
Figure 2. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
Nitrate/Nitrite NO2+ NO3 Concentrations (mg/L)	8
Figure 3. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
Nitrate/Nitrite NO2+NO3Yields (kg/ha/day)	9
Figure 4. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
Orthophosphate PO4 Concentrations (mg/L)	10
Figure 5. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
Orthophosphate Yields (kg/ha/day)	11
Figure 6. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
Specific Conductivity (milliseimens/cm)	13
Figure 7. Collington Br., Northeast Br., & Lottsford Br. Watersheds	
WRAS Nutrient Synoptic Survey April, 2003	
PH units	14

Introduction

A nutrient synoptic survey was conducted during April, 2003 in the Collington Branch, Northeast Branch, and Lottsford Branch watersheds as part of the Western Branch WRAS

Nutrient synoptic sampling was scheduled for early spring to coincide with the period of maximum nitrogen concentrations in the free flowing fresh water streams. The major proportion of the nitrogen compounds are carried dissolved in the ground water rather than in surface runoff. The higher nitrogen concentrations in the late winter and early spring reflect the higher proportion of nitrogen rich shallow ground water present in the base flow at this time of year. Nitrogen concentrations are reduced in summer as the proportion of shallow ground water is reduced through plant uptake, and replaced by deeper ground water that may have lower nitrate concentrations, or has been denitrified through interaction with anoxic conditions in the soils below the streambed. Point sources can also contribute to in stream nitrate concentrations.

Orthophosphate is generally transported bound to suspended sediments in the water column. In stream orthophosphate concentrations can also be produced through mobilization of sediment bound phosphorus in anoxic water column and/or sediment conditions, sediment in surface runoff from areas having had surface applied phosphorus, ground water from phosphorus saturated soils, and point source discharges.

Ranges used for nutrient concentrations and yields (Table 1) were derived from work done by Frink (1991). The low end values are based on estimated nutrient exports from forested watersheds, and the high end values are based on estimated nutrient exports from intensively agricultural watersheds. As an additional benchmark, the Chesapeake Bay Program uses 1 mg/L total nitrogen as a threshold for indicating anthropogenic impact. The dissolved nitrogen fraction looked at in these synoptic surveys constitutes approximately 50% to 70% of the total nitrogen.

	NO2+NO3	NO2+NO3	PO4	PO4
	Concentration	Yield	Concentration	Yield
Rating	mg/L	Kg/ha/day	mg/L	Kg/ha/day
Baseline	<1	<.01	<.005	<.0005
Moderate	1 to 3	.01 to .02	.005 to .01	.0005 to .001
High	3 to 5	.02 to .03	.01 to .015	.001 to .002
Excessive	>5	>.03	>.015	>.002

Table 1. Nutrient Ranges and Rating

A Note of Caution

Estimates of annual dissolved nitrogen loads/yields from spring samples will result in inflated load estimates, but the relative contributions of subwatersheds should remain reasonably stable. More accurate nitrate/nitrite load/yield estimates need to include sampling during the growing season to account for potential lower concentrations and discharges. Storm flows can also significantly impact loads delivered to a watershed outlet. The tendency of orthophosphate to be transported bound to sediments makes any estimates of annual orthophosphate loads/yields derived from base flow conditions very conservative. More accurate estimates of orthophosphate loads/yields in a watershed must include samples from storm flows that carry the vast majority of the sediment load of a watershed. Residual suspended sediments from recent rains, or instream activities of livestock or construction can produce apparently elevated orthophosphate concentrations and yields at base flow.

METHODS

Water Chemistry Sampling

Synoptic water chemistry samples were collected in early spring throughout the watershed. Sampling was halted for a minimum of 24 hours after rainfall events totaling more than .25 inches. Grab samples of whole water (500 ml) were collected just below the water surface at mid-stream and filtered using a 0.45 micron pore size (Gelman GF/C) filter. The samples were stored on ice and frozen on the day of collection. Filtered samples were analyzed by the Nutrient Analytical Services Laboratory at the University of Maryland's Chesapeake Biological Laboratory (CBL) for dissolved inorganic nitrogen (NO₃, NO₂), and dissolved inorganic phosphorus (PO₄). All analyses were conducted in accordance with U.S. Environmental Protection Agency (EPA) protocols. Stream discharge measurements were taken at the time of all water chemistry samples. Water temperature, dissolved oxygen, pH, and conductivity were measured in the field with a Hydrolab Surveyor II at selected sites at the time of water quality collections. Watershed areas used to calculate nutrient yields per unit area were determined from a digitized watershed map using Arcview software.

Where sites are nested in a watershed the mapped concentration data for the downstream site is shown only for the area between the sites. Yield calculations for a downstream site are based on the entire area upstream of the site, but are mapped showing just the area between sites. The downstream sites therefore illustrate the cumulative impact from all upstream activities.

Benthic Macroinvertebrate Sampling

Aquatic macroinvertebrates were collected at the time of water chemistry samples during the spring to be within the MBSS spring index period. Macroinvertebrate collections were made over a 2m² area of the best available habitat using a 0.3m wide dip net with a mesh size of 500 microns. The best available habitats include: gravel riffles, snags, submerged vegetation and root mats. Habitats were sampled in the proportion to their occurrence at the station. Samples were composited in a sieve bucket, fine sediments washed out, and large debris rinsed and discarded. The remaining sample was preserved in 70% ethanol and returned to the laboratory for subsampling. Subsampling was done using a gridded tray. Grids were chosen at random until the grid with the 100th organism had been completed. Organisms were identified to genus, recorded on a bench sheet, and archived for future reference. Insitu water quality data (dissolved oxygen, pH, conductivity, temperature) were collected during each sampling episode with a Hydrolab Surveyor II. A macroinvertebrate index of biotic integrity (IBI)(MD DNR, 1998) was calculated to facilitate ranking of site quality.

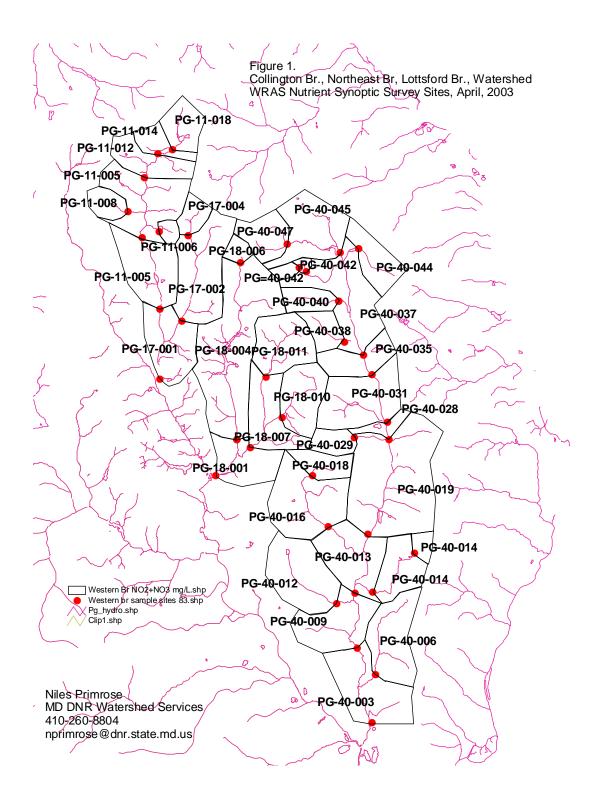
Fish Sampling

Fish were sampled during the summer to coincide with the MBSS index period for fish sampling. Backpack electroshockers were used for two passes through a 75 meter reach of stream with block nets at each end of the reach. All species were enumerated and weighed to obtain taxa richness and biomass estimates.

Results

The Collington Branch, Northeast Branch, and Lottsford Branch watersheds in Prince George's County were delineated into 40 subwatersheds based on the sampling site locations provided by the county. Station locations are noted in Table 2, and subwatersheds are shown in Figure 1. Grab samples for dissolved nutrient analysis were collected at 31 of these sites. Nine of the 40 sites identified were not sampled due to beaver or storm water control ponds (7), or map errors (2). Benthic samples were collected at a subset of 18 sites and fish at 4 sites.

Nutrient concentrations and yields from the Collington Branch, Northeast Branch, and Lottsford Branch watersheds are shown in Table 3. Nitrate/nitrite concentrations were found to be baseline at all but one of the 31 sites sampled. The one site with a moderate nitrate/nitrite concentration was located in the headwaters of Lottsford Branch (Figure 2). Nitrate/nitrite yields where baseline at all but two sites. The two subwatersheds with moderate nitrate/nitrite yields were the one with the elevated nitrate/nitrite concentration noted above, and the one immediately downstream (Figure 3). Excessive concentration of orthophosphate where found in 2 subwatersheds, high concentrations in 1, moderate concentrations in 10, with the remainder below baseline (Figure 4). Orthophosphate yields were baseline throughout the watersheds (Figure 5). No anomalies where found in the insitu measurements of dissolved oxygen and temperature. Specific conductivity and pH anomalies were found in 7 subwatershed (Table 4, Figures 6 & 7). Benthic macroinvertebrate communities at the eighteen sites sampled were poor to very poor (Table 5. Fish communities at the four sites sampled would be considered poor (Table 6).


Discussion

The predominance of low nutrient concentrations and yields within the three watersheds sampled is typical of urban/suburban watersheds that have been sampled for other WRAS projects (Table 7). The subwatershed in the headwaters of Lottsford Branch with the moderate nitrate/nitrite concentration and yield has a number of large (10 acre+) lots that may contain small agricultural operations. The continuation of the moderate nitrate/nitrite yield in the subwatershed directly downstream of the one mentioned above may be associated with the sod farm within this subwatershed. As noted previously, orthophosphate tends to travel bound to sediment. The two subwatersheds with excessive and one with high orthophosphate concentrations were at or near the watershed outlet indicating that the sediment sources are probably localized in these subwatersheds. The high spring rainfall produced almost continuous discharges of muddy water from the large number of storm water and/or beaver ponds within these subwatersheds. These discharges are a significant contributing factor to extended periods of turbid water during

Table 2. Collington Branch, Northeast Branch, and Lottsford BranchWatersheds WRAS, April 2003Station Location

STATIONID STREAM LATITUDE LONGITUDE NOTES 11-005A Folly Bra 38.94491 -76.81925 was recent beaver pond 11-005C Folly Bra 38.96516 -76.82563 beaver pond 11-006 UT to Fol 38.96708 -76.81947 no sample beaver pond 11-008 UT to Fol 38.97272 -76.83100

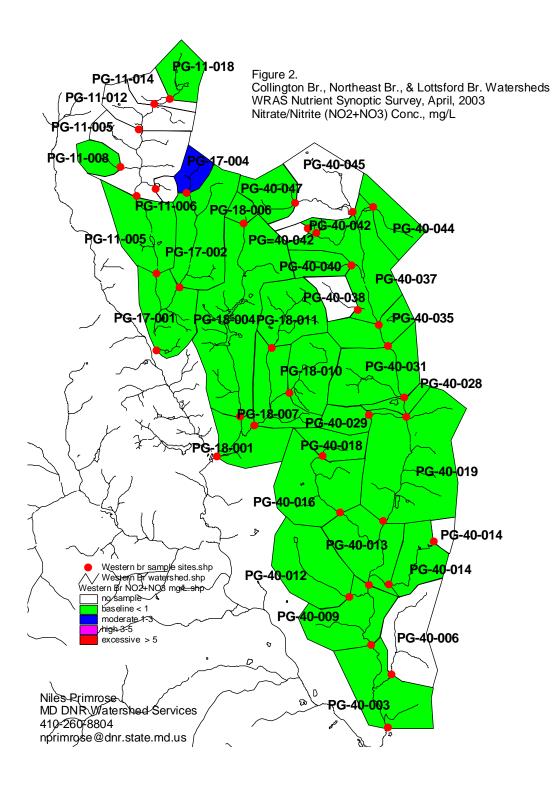
11-0050	гону Бга	30.90310	-70.02000	beaver pond
11-006	UT to Fol	38.96708	-76.81947	no sample beaver pond
11-008	UT to Fol	38.97272	-76.83100	
11-012	Folly Bra	38.98231	-76.82453	no sample beaver pond
11-014	Folly Bra	38.98908	-76.81947	no sample beaver pond
11-018	Folly Bra	38.99036	-76.81465	
17-001	Lottsford	38.92499	-76.81934	
17-002A	Lottsford	38.94138	-76.81139	
17-004	Lottsford	38.96594	-76.80939	
18-001	Northeast	38.89733	-76.79907	
18-004	Northeast	38.90764	-76.79125	
18-006	Northeast	38.95806	-76.78992	
18-007	UT to Nor	38.90535	-76.78659	
18-010	UT to Nor	38.91403	-76.77478	
18-011	UT to Nor	38.92589	-76.78056	beaver dam below obstructing flow
40-003	Collingto	38.82671	-76.74243	
40-006	East Bran	38.84049	-76.74117	no sample construction site
40-009	Collingto	38.84811	-76.74783	
40-012	UT to Col	38.86072	-76.75507	very heavy filamentous, turbid
40-013	Collingto	38.86377	-76.74859	
40-014	UT to Col	38.86402	-76.74199	
40-014C	UT to Col	38.87504	-76.72679	no sample sediment pond
40-016	Black Bra	38.88275	-76.75811	
40-018	Black Bra	38.89731	-76.76385	
40-019	Collingto	38.88044	-76.74384	
40-028	Collingto	38.89869	-76.73518	
40-029	Collingto	38.90744	-76.73588	
40-031	Collingto	38.91249	-76.73655	
40-035	Collingto	38.92591	-76.74200	
40-037	Collingto	38.93155	-76.74505	
40-038	UT to Col	38.93532	-76.75208	no sample beaver pond
40-040	UT to Col	38.94697	-76.75417	same stream braided channel
40-042A	UT to Col	38.95540	-76.76582	
40-042B	UT to Col	38.95672	-76.76853	no sample no stream
40-044	UT to Col	38.96209	-76.74682	
40-045	Collingto	38.96090	-76.75351	no sample beaver pond
40-047	Collingto	38.96326	-76.77282	

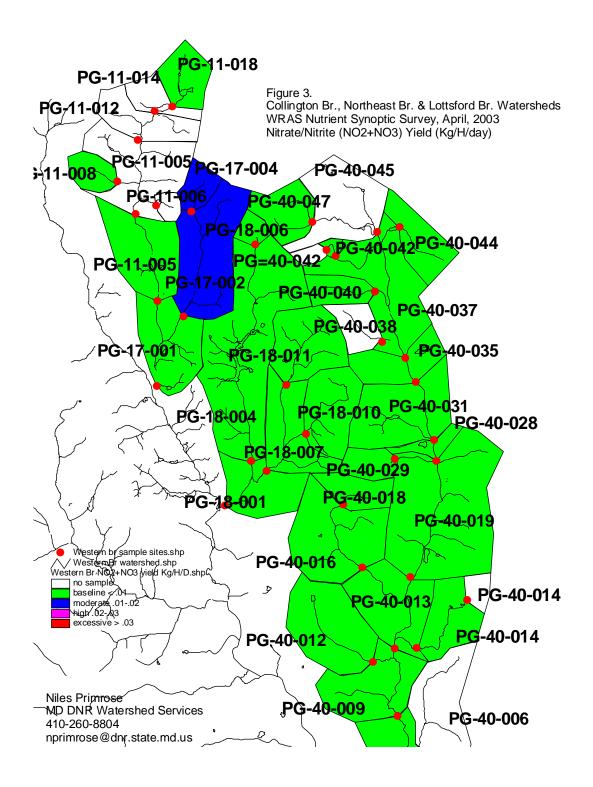
Table 3. Collington Branch, Northeast Branch, and Lottsford Branch Watersheds WRAS, April 2003

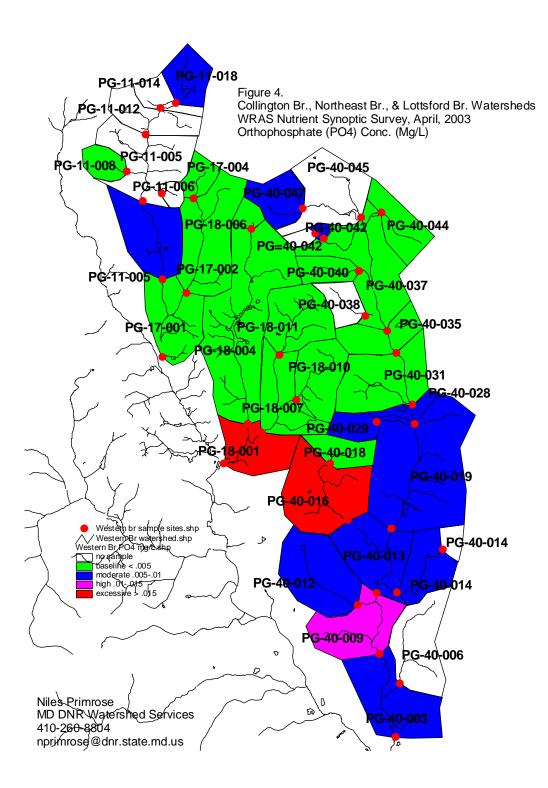
Nutrient Synoptic Survey Results

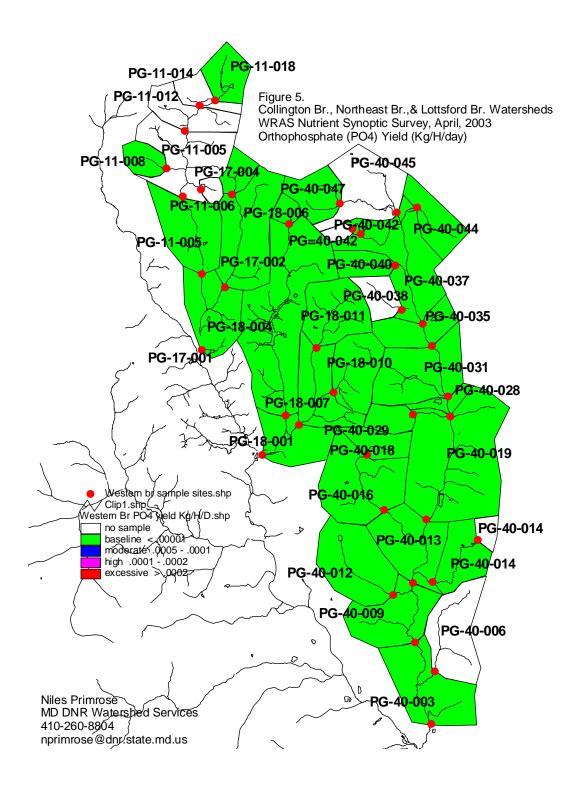
		Watershed				PO4	NO2+NO33
	SAMPLE	Area	L/sec	PO4	NO2+NO33	yield	yield
DATE	SITE	Hectares	discharge	mg/L	mg/L	KG/H/day	KG/H/day
04/14/03	PG-11-005A	1383	651	0.005	0.04	0.000203	0.001628
	PG-11-005C	1032	11			0.000000	0.000000
	PG-11-006	42				0.000000	0.000000
04/14/03	PG-11-008	100	15	0.003	0.54	0.000039	0.006998
	PG-11-012					0.000000	0.000000
	PG-11-014	273				0.000000	0.000000
04/14/03	PG-11-018	166	25	0.005	0.10	0.000066	0.001323
04/14/03	PG-17-001	2269	687	0.003	0.17	0.000079	0.004448
04/14/03	PG-17-002A	563	192	0.003	0.39	0.000089	0.011519
04/14/03	PG-17-004	92	14	0.003	1.23	0.000040	0.016381
04/04/03	PG-18-001	2100	239	0.018	0.41	0.000177	0.004037
04/04/03	PG-18-004	963	85	0.002	0.59	0.000015	0.004495
04/04/03	PG-18-006	54	2	0.002	0.06	0.000008	0.000227
04/04/03	PG-18-007	881	100	0.002	0.24	0.000020	0.002360
04/16/03	PG-18-010	275	31	0.003	0.01	0.000029	0.000098
04/04/03	PG-18-011	311	85	0.002	0.06	0.000047	0.001418
04/03/03	PG-40-003	6000	735	0.007	0.20	0.000074	0.002117
	PG-40-006					0.000000	0.000000
04/16/03	PG-40-009	5215	577	0.013	0.08	0.000124	0.000765
04/16/03	PG-40-012	412	72	0.005	0.31	0.000076	0.004711
04/16/03	PG-40-013	4458	486	0.008	0.09	0.000075	0.000848
04/16/03	PG-40-014	282	19	0.006	0.23	0.000036	0.001363
	PG-40-014C	54				0.000000	0.000000
04/04/03	PG-40-016	606	56	0.023	0.09	0.000184	0.000720
04/16/03	PG-40-018	138	5	0.003	0.04	0.000010	0.000134
04/16/03	PG-40-019	3209	359	0.007	0.12	0.000068	0.001161
04/16/03	PG-40-028	2208	188	0.005	0.04	0.000037	0.000294
04/04/03	PG-40-029	104	19	0.005	0.26	0.000079	0.004093
04/16/03	PG-40-031	2145	193	0.004	0.03	0.000031	0.000234
04/14/03	PG-40-035	1732	233	0.003	0.08	0.000035	0.000930
04/14/03	PG-40-037	1532	159	0.004	0.05	0.000036	0.000449
	PG-40-038	119				0.000000	0.000000
04/17/03	PG-40-040/41	120	9	0.003	0.23	0.000019	0.001487
04/17/03	PG-40-042A	52	4	0.008	0.43	0.000052	0.002794
	PG=40-042B	33				0.000000	0.000000
04/17/03	PG-40-044	203	5	0.003	0.52	0.000007	0.001173
	PG-40-045	561				0.000000	0.000000
04/04/03	PG-40-047	187	6	0.005	0.01	0.000013	0.000026

baseflow conditions, thus producing elevated orthophosphate concentrations. As noted in the results, all orthophosphate yields were below baseline.

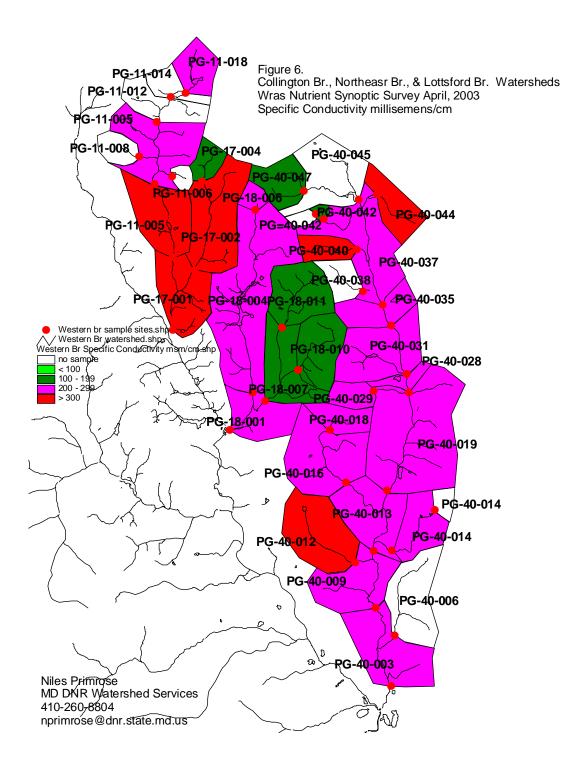

The six subwatersheds with elevated specific conductivity appear to be associated with intense development. Residual road salt in shoulder and median soils from the preceding winter in these areas of intense road networks could be a significant contributor to the elevated specific conductivity. The specific conductivities found during this sampling episode would not necessarily be considered detrimental to the stream biota. The concern would be that, if road salts are the source, at peak application rates and times the salt content of the receiving streams could reach detrimental levels in portions of the watershed.


The low pH values found in four subwatersheds are most likely associated with the underlying geology of the area. Several streams in the adjacent watershed of Mill Branch in Bowie drain acidic soils exposed during construction activities resulting in stream pH values of less than 4. The same acidic soil strata may have been exposed in the Collington Branch subwatersheds through construction activities or stream channel erosion. While the 5.5 to 6.5 pH values noted in these subwatersheds are not significantly detrimental to the biota, they make the stream much more susceptible to periodic significant reductions in pH due to acidic precipitation that would be detrimental to the stream biota.


The overall poor condition of the biotic community was attributed to the prevalence of degraded habitat throughout the watersheds associated with storm water flows.


Conclusion

Dissolved nutrients in the Collington Branch, Northeast Branch, and Lottsford Branch watersheds are not considered significant from the information collected during this synoptic survey. This is consistent with other urban/suburban watersheds sampled for WRAS projects. The elevated specific conductivity found in high density road areas indicates a significant potential for impact to stream biota from road salt applications. The overwhelming presence of degraded instream habitat due to storm water flows has the most significant impact on the quality of the stream biota.



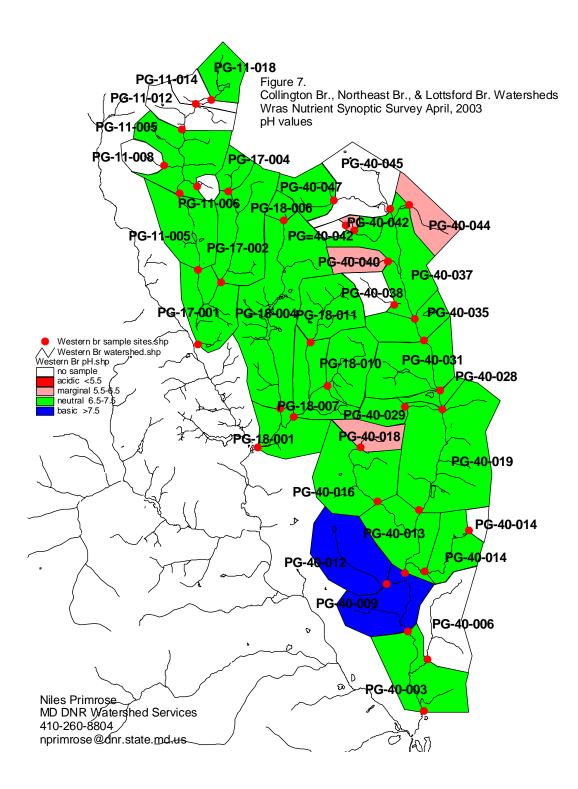


Table 4. Collington Branch, Northeast Branch, and Lottsford BranchWatersheds WRAS, April 2003Insitu Water Quality Parameters

	SAMPLE					
DATE	SITE	time	temp	рΗ	DO	Cond
04/14/03	PG-11-005A	945	13.25	7.36	11.12	324
	PG-11-005C	1315	14.46	6.9	10.4	268
	PG-11-006					
04/14/03	PG-11-008					
	PG-11-012					
	PG-11-014					
04/14/03	PG-11-018	1130	14.85	7.24	13.62	263
04/14/03	PG-17-001	900	12.92	7.32	10.52	330
04/14/03	PG-17-002A	1040	13.5	6.96	11.56	320
04/14/03	PG-17-004	1150	15.7	6.59	8.8	192
04/04/03	PG-18-001	945	11.87	6.91	10.82	262
04/04/03	PG-18-004	845	12.3	6.9	10.4	298
04/04/03	PG-18-006	1100	11.07	6.98	10.87	232
04/04/03	PG-18-007	915	11.3	6.85	10.4	169
04/16/03	PG-18-010	1500	22.04	6.62	7.61	165
04/04/03	PG-18-011	800	10.7	6.8	9.5	162
04/03/03	PG-40-003	1426	17.86	7.04	10.35	277
	PG-40-006					
04/16/03	PG-40-009	1415	18.13	7.53	10.73	247
04/16/03	PG-40-012	1250	19.29	7.9	13.3	339
04/16/03	PG-40-013	1100	16.4	6.97	11.02	229
04/16/03	PG-40-014	1145	17.68	7.07	11.78	247
	PG-40-014C					
04/04/03	PG-40-016	1305	10.7	7.21	12.16	223
04/16/03	PG-40-018	1530	17.7	6.47	9.59	297
04/16/03	PG-40-019	958	15.68	6.8	10.85	244
04/16/03	PG-40-028	1545	20.9	6.7	10.16	244
04/04/03	PG-40-029	1245	11.7	6.89	10.27	241
04/16/03	PG-40-031	1600	20.2	6.72	9.98	243
04/14/03	PG-40-035	1400	14.9	6.76	11.12	247
04/14/03	PG-40-037	1425	18.34	6.7	11.54	252
	PG-40-038					
04/17/03	PG-40-040/41	1130	13.2	6.18	11.09	485
04/17/03	PG-40-042A	945	12.02	6.17	9.89	188
	PG=40-042B					
04/17/03	PG-40-044	830	11.48	5.91	8.33	474
	PG-40-045					
04/04/03	PG-40-047	1200	11.9	7.1	8.9	156

			%	% Tanytarsini	Becks	# of	%	IBI	
Station	# of Taxa	# of EPT	Ephemoptera	of Chironomids	Index	Scrapers	Clingers	Calc***	IBI Score
11-005A	9/1	0/1	0/1	0/1	0/1	2/3	1/1	9/7	1.3
17-001	17/3	1/1	0/1	0/1	1/1	3/3	0/1	11/7	1.6
17-002A	8/1	0/1	0/1	0/1	0/1	0/1	0/1	7/7	1
17-004	10/1	0/1	0/1	0/1	0/1	0/1	0/1	7/7	1
18-001	13/3	1/1	0/1	8/3	1/1	1/3	0/1	13/7	1.9
18-006	10/1	0/1	0/1	6/3	0/1	0/1	0/1	9/7	1.3
18-007	18/3	2/1	0/1	0/1	2/1	3/3	0/1	11/7	1.6
18-010	8/1	0/1	0/1	0/1	0/1	0/1	1/1	7/7	1
18-011	21/3	1/1	2/3	8/3	1/1	0/1	0/1	13/7	1.9
40-009	15/3	2/1	2/3	0/1	2/1	1/3	2/1	15/7	1.9
40-012	15/3	3/3	1/1	0/1	3/1	2/3	0/1	13/7	1.9
40-013	20/3	4/3	1/1	0/1	6/3	2/3	6.1	17/7	2.1
40-014	14/3	2/1	1/1	0/1	2/1	2/3	4/1	11/7	1.6
40-016	14/3	3/3	0/1	0/1	2/1	1/3	2/1	13/7	1.9
40-019	12/3	2/1	7/3	1/3	2/1	1/3	0/1	15/7	2.1
40-040/41	11/3	1/1	0/1	0/1	1/1	0/1	0/1	9/7	1.3
40-044	5/1	0/1	0/1	0/1	0/1	0/1	0/1	7/7	1
40-047	7/1	2/1	0/1	6/1	2/1	0/1	5/1	7/7	1

Table 5. Collington Br., Northest Br., Lottsford Br. WRAS Synoptic Survey, April 2003Macroinvertebrate Index of Biotic Integrity

Table 6. Collington Br., Northeast Br., & Lottsford Br WatershedsWRAS Fish Sampling, September, 2003Species totals by site

Common name	Genus	species	PG18010	PG18006	PG17004
Leastbrook lamprey	Lampetra	aepyptera	1	-	-
Goldfish	Carassius	auratus	-	4	-
Blacknose dace	Rhinichthys	atratulus	1	-	-
Creek Chubsucker	Erimyzon	oblongus	5	-	1
Redfin Pickerel	Esox	americanus	6	-	1
Pirate perch	Aphredoderus	sayanus	1	-	-
Eastern mudminnow	Umbra	pygmaea	6	62	19
Yellow bullhead	Amerius	natalis	-	-	4
Pumpkinseed	Lepomis	gibbosus	-	-	1
Tessellated Darter	Etheostoma	olmstedi	48	-	-

				Lower	Western	Upper			
Mg/L	Piney	German Br.	Pocomoke	Patuxent	Branch	Patuxent	Choptank	Liberty	
NO2+NO3 Spring	3.742	3.832	3.734	.75	0.214	0.439	2.892	3.410	
NO2+NO3 Annual	4.823	4.704	2.384						
PO4 Spring	0.800	0.043	0.028	0.007	0.005	0.012	0.023	0.004	
PO4 Annual	1.177	0.067	0.022						

Table 7. Annual & Spring Nutrient Concentration Averages from Other Nutrient Synoptic Surveys

Literature Cited

Chesapeake Bay and Watershed Programs, Monitoring and Non-Tidal Assessment, 1998. *Development of a Benthic Index of Biotic Integrity for Maryland Streams*. CBWP-MANTA – EA-98-3

Frink, Charles R. 1991. *Estimating Nutrient Exports to Estuaries*. Journal of Environmental Quality. 20:717-724.