

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

Maryland Trust Fund Geomorphic Monitoring

Stream Habitat Assessment and Restoration Program Chesapeake Bay Field Office U.S. Fish and Wildlife Service

Richard Starr

CHESAPEAKE BAY FIELD OFFICE

Maryland Trust Fund Geomorphic Monitoring

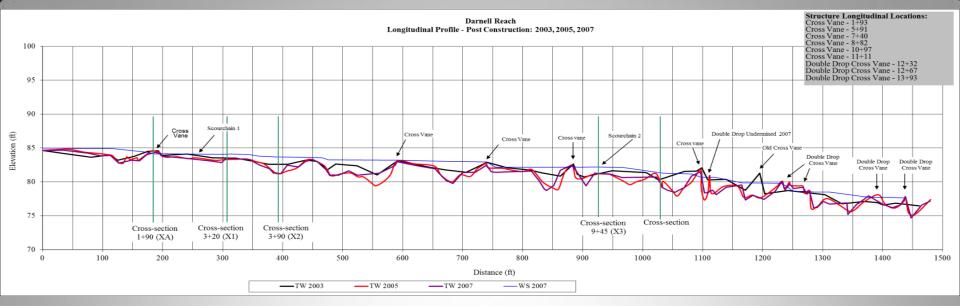
Collection Methods

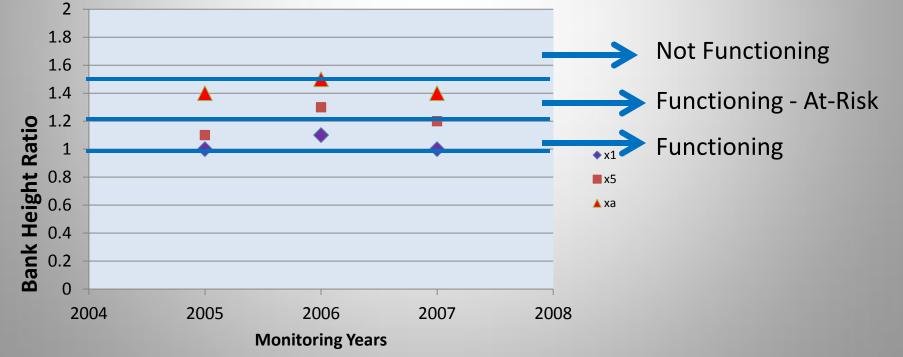
- Cross Sections
- Longitudinal Profile
- Toe Pin and Bank Profile
- <u>B</u>ank <u>A</u>ssessment for <u>N</u>on-point source <u>C</u>onsequences of <u>S</u>ediment (BANCS)
- Meander Width Ratio (MWR)

Geomorphic Functions Assessed

- Lateral Stability
 - <u>B</u>ank <u>A</u>ssessment for <u>N</u>on-point source
 <u>C</u>onsequences of <u>S</u>ediment (BANCS)
 - Meander Width Ratio (MWR)
 - Toe Pin and Bank Profile Survey

Floodplain Connectivity


- Entrenchment Ratio (ER)
- Bank Height Ratio (BHR)
- Riparian Vegetation
- Bedform Diversity/Sediment
 Transport
 - Pool Depth Variability
 - Pool-to-Pool Spacing


U.S. Fish & Wildlife Service

CHESAPEAKE BAY FIELD OFFICE

Level and Category	Parameter	Measurement	Pre-Restorat	ion Condition	Post-Restora	tion Condition
	Parameter	Method	Value	Rating	Value	Rating
1 - Hydrology	Channel-Forming Discharge	Regional Curves	N/A	N/A	N/A	N/A Used as an input parameter for Level 2 and 3
	Floodplain	Bank Height Ratio	1.5	Not Functioning	1.0	Functioning
2- Hydraulics	Connectivity	Entrenchment Ratio	1.73	Not Functioning	>2.2	Functioning
		HEC-RAS	n/a			
		Pool-to-pool spacing	1.5 to 9	Not Functioning	4 to 5	Functioning
		Pool Depth Variability	2.0 to 3.0	Functioning	2.0 to 3.0	Functioning
	Bed Form diversity	Riffle Length to Riffle Width	2.9 to 4.3	Functioning	3 to 5	Functioning
		Riffle Slope to Reach Slope	1.2 to 3.9	FAR	1 to 2	Functioning
		Pool Slope to Reach Slope	0.3 to 0.6	FAR	0.2 to 0.3	Functioning
		Rosgen	$F \rightarrow C \rightarrow E$	FAR	Е	Functioning
3 – Geomorphology	Channel Evolution	PFC	Not Functional	Not Functioning	Functional	Functioning
	Riparian Vegetation	Buffer Width based on Beltwidth	0	Not Functioning	300	Functioning
		BEHI/NBS	Mod / Low	FAR	Low/Low	Functioning
		Lateral Erosion Rate	0.09 yr/ft	Functioning	<0.01	
		Confinement	0.69 to 1.14	Functioning	>1.0	Functioning
	Lateral Stability	MWR	2.4 to 4.0	Functioning	>3.5	Functioning
		W/D _{proj} /W/D _{ref}	1.4	FAR	1.0 to 1.2	Functioning
		Wavelength to Riffle Width	9 to 14	Functioning	7 to 14	Functioning

Floodplain Connectivity

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

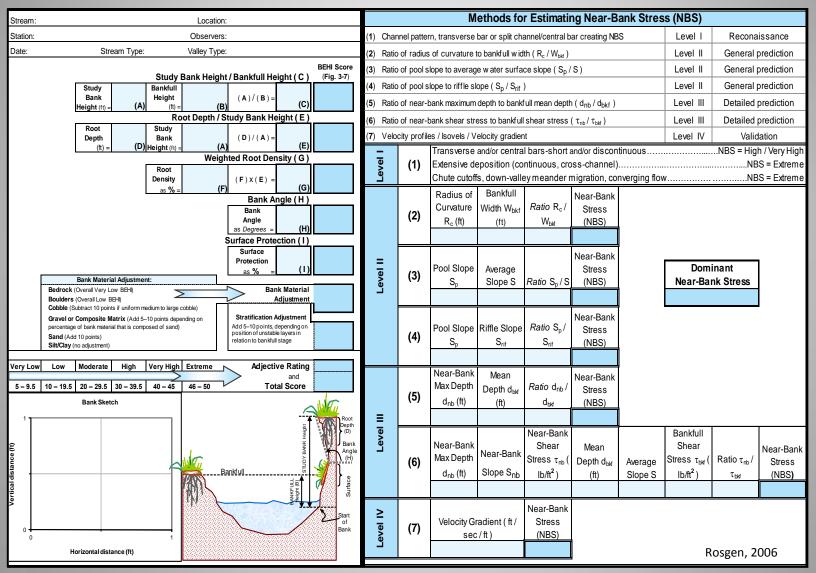
Bank Assessment for Nonpoint source Consequences of Sediment (BANCS)

Stream Habitat Assessment and Restoration Program Chesapeake Bay Field Office U.S. Fish and Wildlife Service

Sandy Davis Rich Starr

COASTAL PROGRAM

CHESAPEAKE BAY FIELD OFFICE


Bank Assessment for Non-point source Consequences of Sediment (BANCS)

- Model to predict streambank erosion rates
- Methods based on Rosgen (2006) Rosgen, D.L. 2006. Watershed Assessment of River Stability & Sediment Supply (WARSSS). Wildland Hydrology. Pagosa Springs, CO.
- Two measurements
 - Bank Erosion Hazard Index (BEHI)
 - Near Bank Stress (NBS)
- Erosion rates estimated using bank erodibility curves

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

BEHI

- Evaluates erodibility potential
- Several Bank Characteristics
 - Top of Bank
 - Bankfull Height
 - Rooting Depth
 - Root Density
 - Bank Angle
 - Percent Bank Protection
 - Bank Composition
 - Bank Material Stratification

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

BEHI

	Bank Erosion Hazard Rating Guide							
	Stream		Reach		Date		Crew	
	Bank Height (ft):		Bank Height/	Root Depth/	Root	Bank Angle	Surface	
	Bankfull Height (ft)):	Bankfull Ht	Bank Height	Density %	(Degrees)	Protection%	
	_	Value	1.0-1.1	1.0-0.9	100-80	0-20	100-80	
	VERY LOW	Index	1.0-1.9	1.0-1.9	1.0-1.9	1.0-1.9	1.0-1.9	
	-	Choice	V: I:	V: I:	V: I:	V: I:	V: I:	
	_	Value	1.11-1.19	0.89-0.5	79-55	21-60	79-55	
=	LOW	Index	2.0-3.9	2.0-3.9	2.0-3.9	2.0-3.9	2.0-3.9	
Potential	_	Choice	V: I:	V: I:	V: I:	V: I:	V: I:	
ter	MODERATE	Value	1.2-1.5	0.49-0.3	54-30	61-80	54-30	
Po		Index	4.0-5.9	4.0-5.9	4.0-5.9	4.0-5.9	4.0-5.9	
E		Choice	V: I:	V: I:	V: I:	V: I:	V: I:	
Erosion	_	Value	1.6-2.0	0.29-0.15	29-15	81-90	29-15	
2	HIGH	Index	6.0-7.9	6.0-7.9	6.0-7.9	6.0-7.9	6.0-7.9	
¥	_	Choice	V: I:	V: I:	V: I:	V: I:	V: I:	
Bank	_	Value	2.1-2.8	0.14-0.05	14-5.0	91-119	14-10	
ш	VERY HIGH	Index	8.0-9.0	8.0-9.0	8.0-9.0	8.0-9.0	8.0-9.0	
	-	Choice	V: I:	V: I:	V: I:	V: I:	V: I:	
	_	Value	>2.8	<0.05	<5	>119	<10	
	EXTREME	Index	10	10	10	10	10	
	-	Choice	V: I:	V: I:	V: I:	V: I:	V: I:	
	V = value, I = inde	X	-	SUB-TO	TAL (Sum one index	from each column)	Rosgen, 1996	

e on

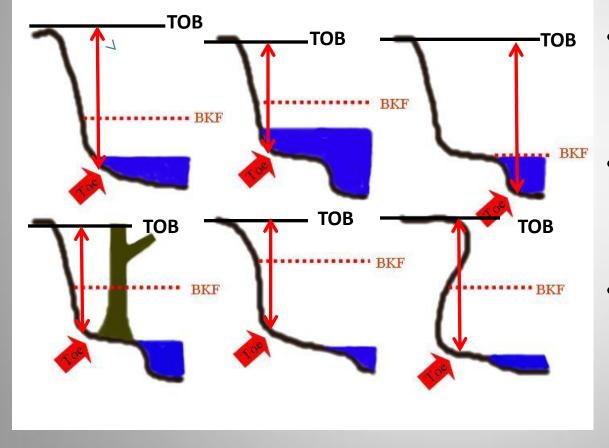
CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM


Selecting Stream Banks for Evaluation

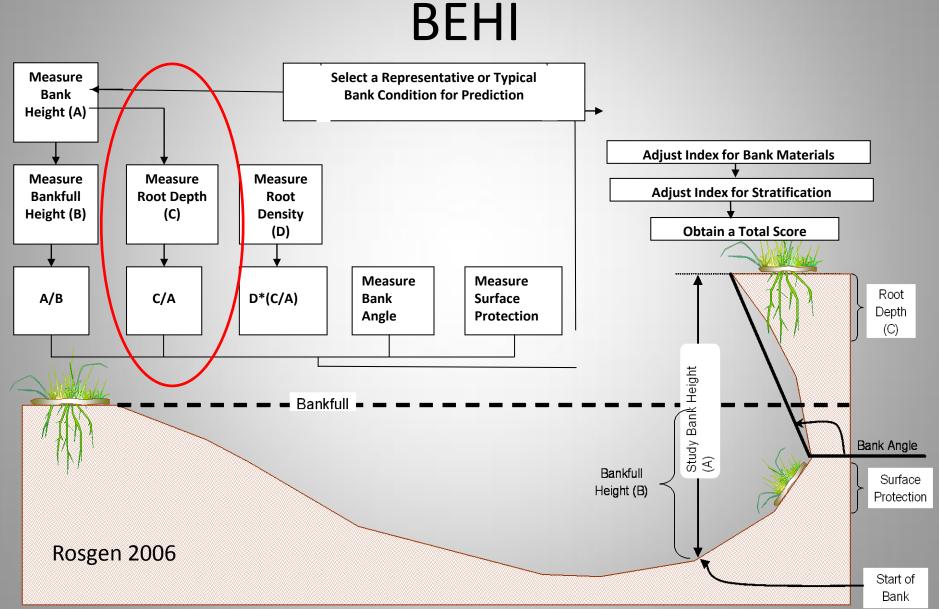
- Assess all stream banks prone to erosion
- Partition study banks based on BEHI/NBS conditions
- Select representative or typical bank condition for prediction
- Avoid evaluating upstream or downstream influences
- Note study bank location on map, site sketch or aerial photo with mylar overlay

CHESAPEAKE BAY FIELD OFFICE



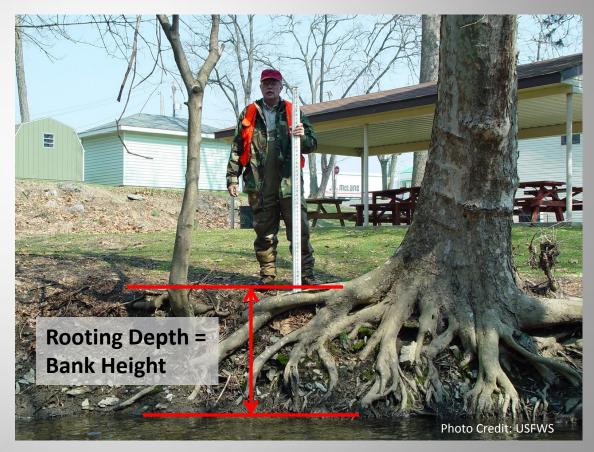
CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM


Study Bank Height/Bankfull Height Ratio (Study Bank Height Ratio)

- Study bank height is measured from bank toe to bank top
- Bankfull height is measured from bank toe to bankfull stage
- The higher the study bank ratio is above 1.0, the higher the erosion risk

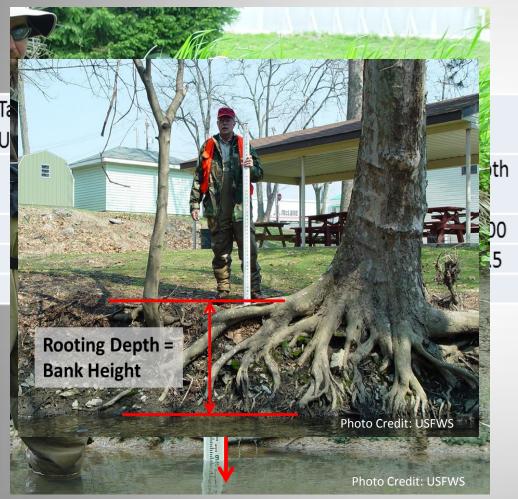
CHESAPEAKE BAY FIELD OFFICE



CHESAPEAKE BAY FIELD OFFICE

Root Depth/Study Bank Height Ratio (Root Depth Ratio)

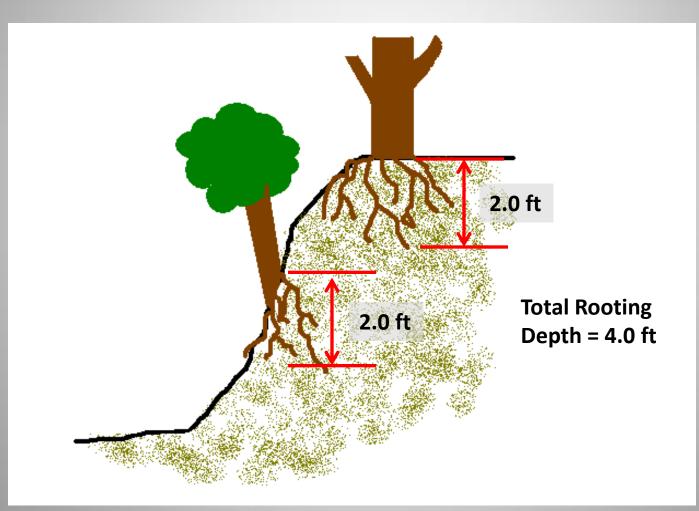
- Measure of rooting depth in relation to top of bank height (Root Depth Ratio)
- The greater the ratio the lower the risk of erosion
- Highly variable and depends on
 - Vegetation Type
 - Soil conditions
- Familiarity with annual and perennial growth and seasonal condition change is essential



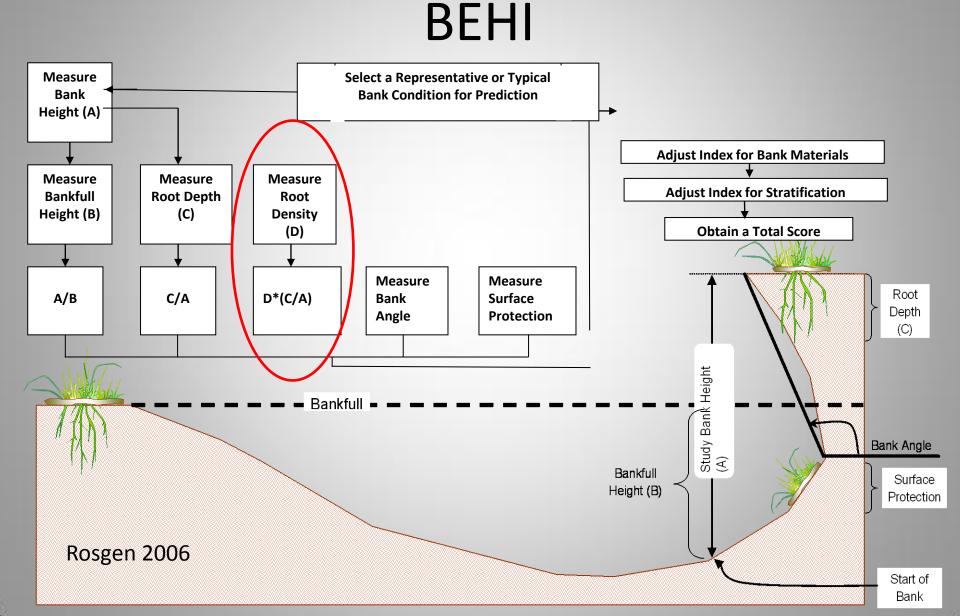
CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

Determining Root Depth


- Where upper bank is accessible, clear soil to expose roots and assess root depth
- If upper bank is not accessible look for areas with exposed roots
- Consider soil conditions
 - Duripans and fragipans retard rooting depths
 - Hemic soils promote rooting depth
- Where trees/tree roots extend down the bank the extent of the roots is the rooting depth

CHESAPEAKE BAY FIELD OFFICE


COASTAL PROGRAM

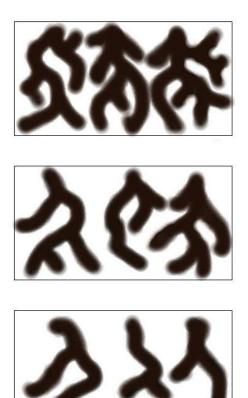
Combining Rooting Depths

CHESAPEAKE BAY FIELD OFFICE

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

Weighted Root Density


- Determine density of root mass within the rooting depth
- Visual assessment
- Percent of the soil composed of roots
- Multiply by the Root Depth Ratio for BEHI Rating
- Greater the weighted density of roots the lower the risk of erosion

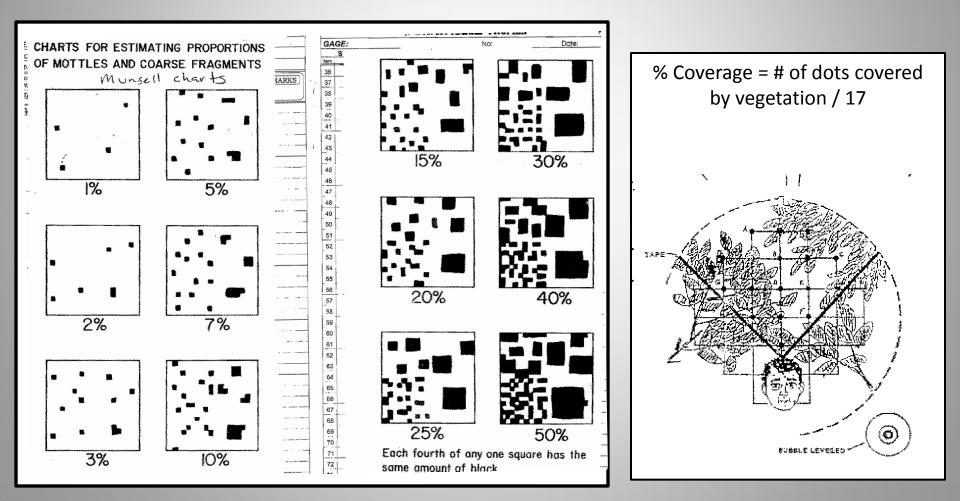
CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

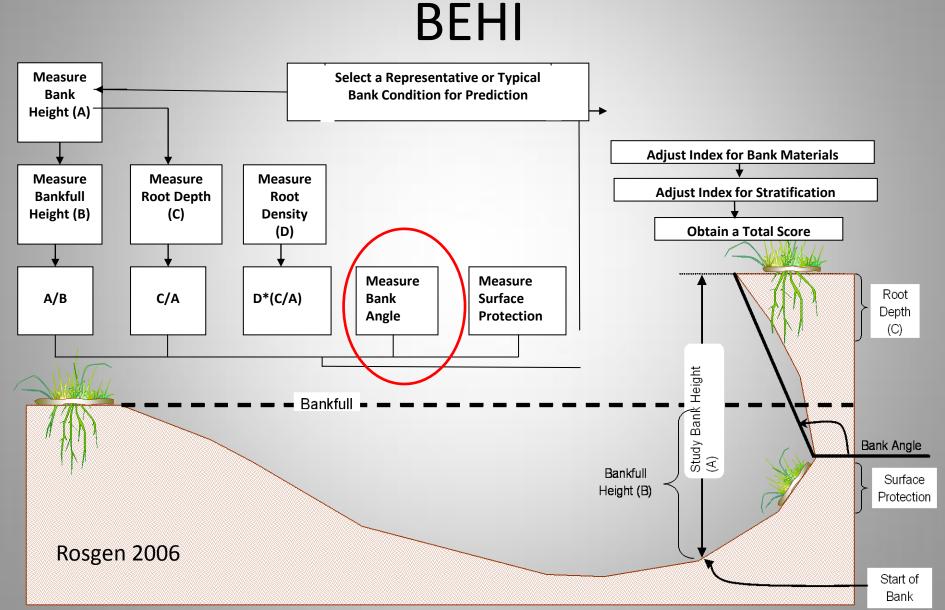
Determining Root Density

75% Root Density

50% Root Density


25% Root Density

CHESAPEAKE BAY FIELD OFFICE


COASTAL PROGRAM

Methods to Estimate Percent Roots

CHESAPEAKE BAY FIELD OFFICE

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

Bank Angle

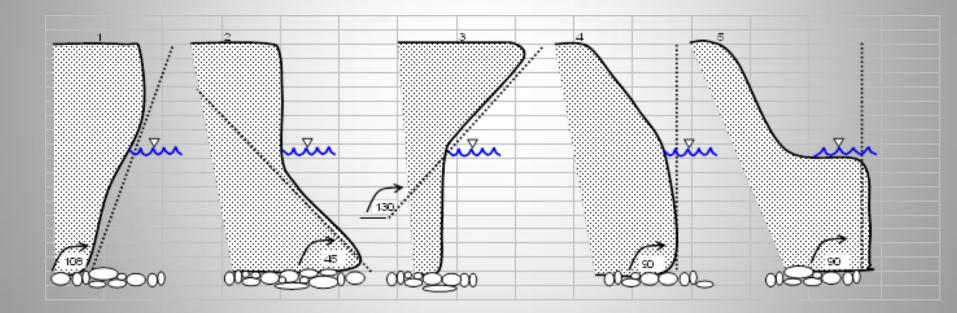
- Used to determine risk of bank failure
- Steeper the bank the more susceptible to erosion

COASTAL PROGRAM

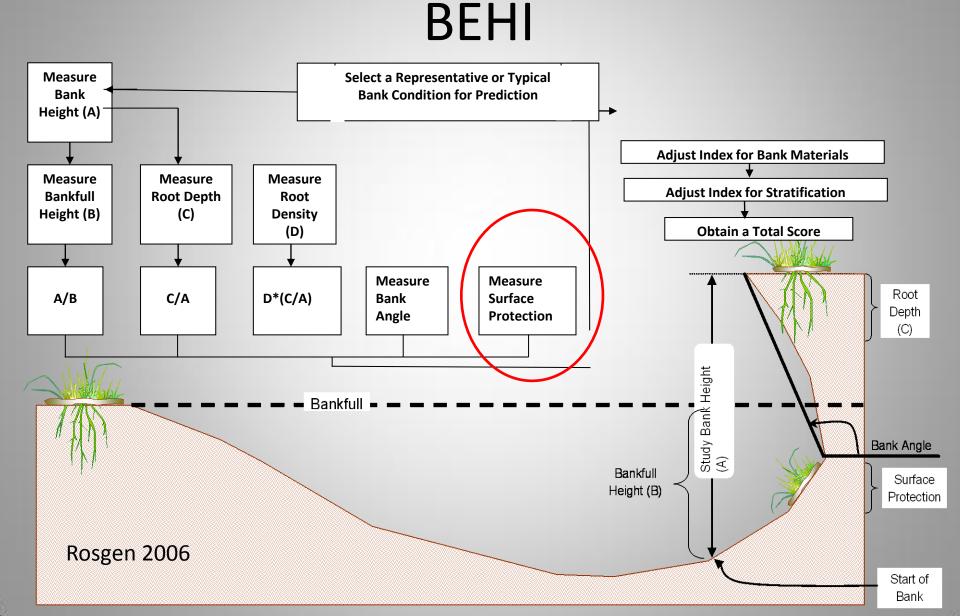
CHESAPEAKE BAY FIELD OFFICE

Measuring Bank Angle

- Measure angle of steepest slope or slope most prone to failure at bankfull flow
- If possible place a survey rod on the slope face
- Use clinometer to measure the angle



CHESAPEAKE BAY FIELD OFFICE


COASTAL PROGRAM

Where to Measure Bank Angle

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

CHESAPEAKE BAY FIELD OFFICE

Surface Protection

- Characterizes how much of the streambank is exposed to erosion
- Measured as the surface area protected from erosion
- Surface protection can be vegetation, root wads, debris, etc.

CHESAPEAKE BAY FIELD OFFICE

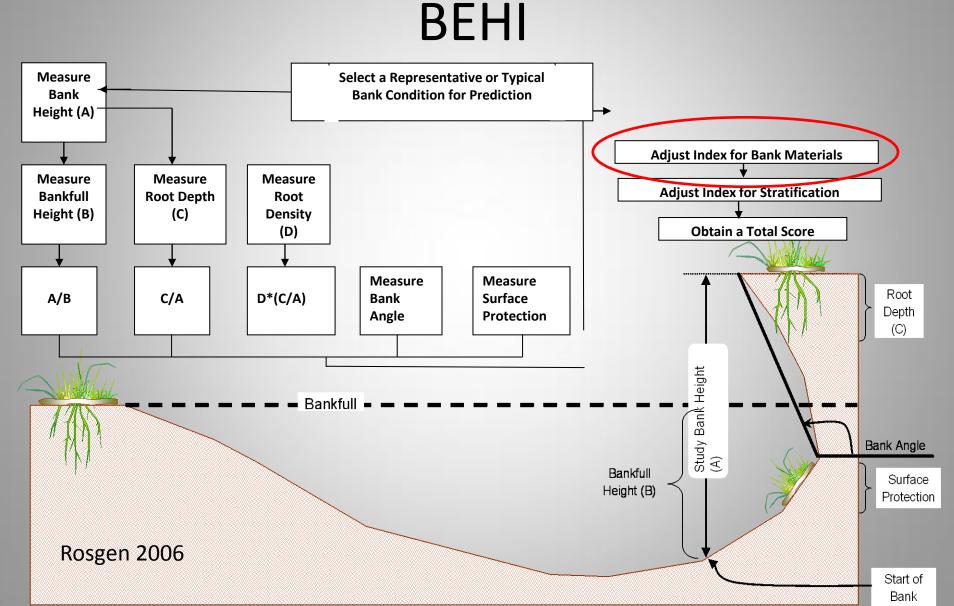
COASTAL PROGRAM

Measuring Surface Protection

- Determine areas along bank that have surface protection
- Determine protected percent of total bank height
- Can use same methods as root density (Munsell Charts, etc.)

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM


Surface Protection

When Banks are vegetated by shrubs or trees, determine percent of bank influenced by the root fan

CHESAPEAKE BAY FIELD OFFICE

CHESAPEAKE BAY FIELD OFFICE

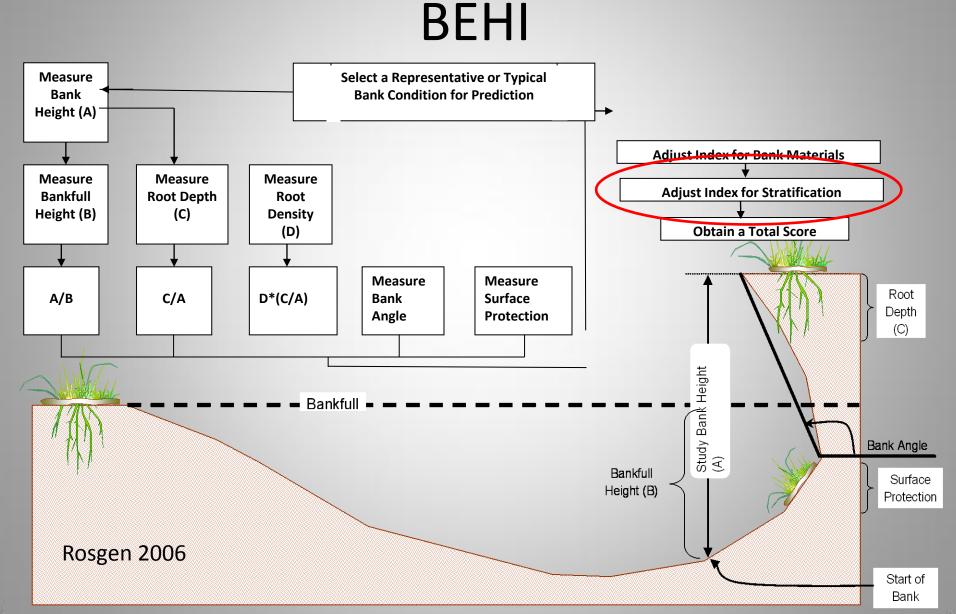
COASTAL PROGRAM

Bank Material Adjustment

- Characterizes the composition and consolidation of bank
- More erodible the soil type, the higher the susceptibility to erosion

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM


Determining Bank Material Adjustment

Bank Material	BEHI Rating Adjustment
Bedrock	BEHI for bedrock banks are "very low erosion potential".
Boulders	BEHI for boulder banks are "low erosion potential".
Cobble	Subtract 10 points. No adjustment if sand/gravel composes greater than 50 percent of bank.
Sand/Silt/Clay Loam	Add 5 points, if composition is 50 – 75 percent sand.
Gravel	Add 5-10 points depending on percentage of bank material composed of sand.
Sand	Add 10 points if sand comprises greater than 75 percent and is exposed to erosional
	processes.
Silt/Clay	Subtract up to 20 points depending on percentage of bank material composed of clay. *Note: this is a new adjustment

- Determine general bank composition
- Adjust BEHI score

CHESAPEAKE BAY FIELD OFFICE

CHESAPEAKE BAY FIELD OFFICE

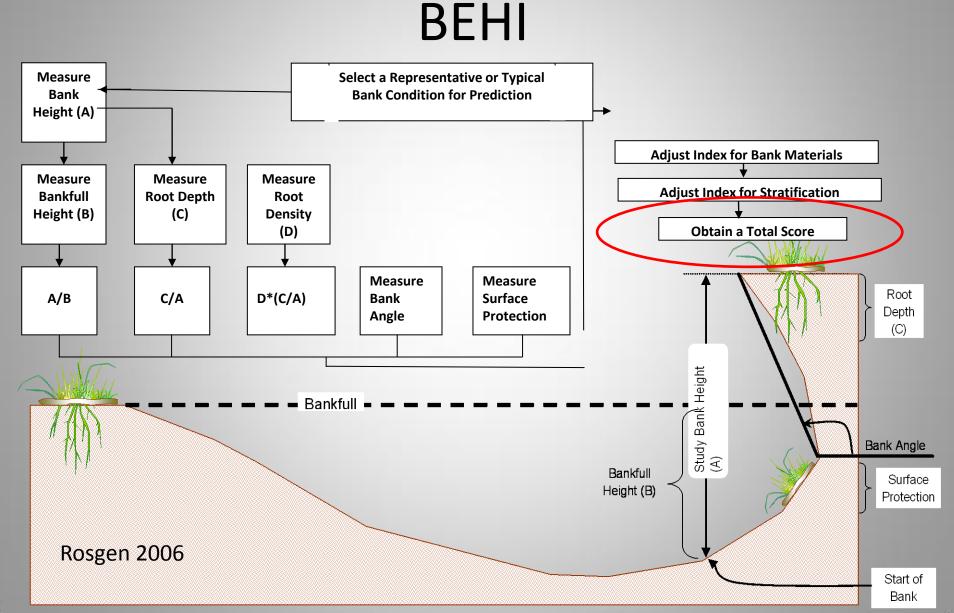
COASTAL PROGRAM

Stratification Adjustment

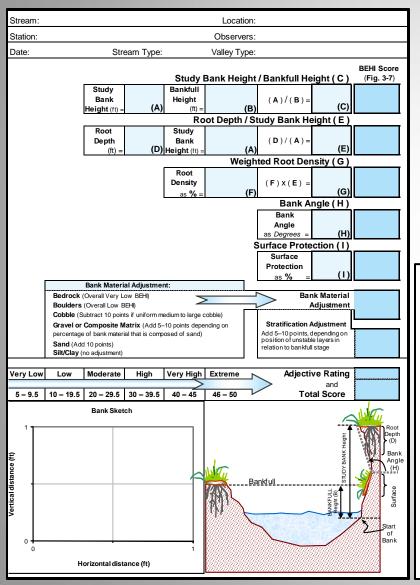
- Characterizes unstable soil horizons prone to erosion in relation to bankfull stage
- Processes to consider include
 - Fluvial entrainment
 - Rotational failure
 - Soil piping
 - Freeze/thaw

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM


Determining Stratification Adjustment

- Observe bank profiles and soil horizons
- Identify zones where
 - Water concentrates
 - Rotational failures
 - Soil Piping
- Evaluate horizon consolidation
- Adjustment is dependent on location of horizons prone to erosion
- Add 5 to 10 points depending on position of unstable layers in relation to the bankfull stage


CHESAPEAKE BAY FIELD OFFICE

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

BEHI Form and Index

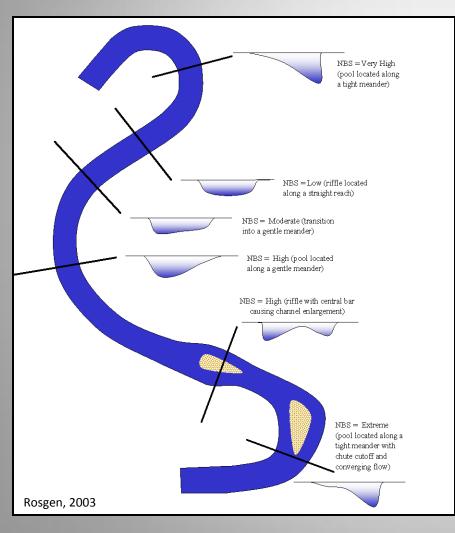
			Bank Ero	sion Hazard Ra	ating Guide		
	Stream		Reach	Date		Crew	
	Bank Height (ft):		Bank Height/	Root Depth/	Root	Bank Angle	Surface
	Bankfull Height ((ft):	Bankfull Ht	Bank Height	Density %	(Degrees)	Protection%
		Value	1.0-1.1	1.0-0.9	100-80	0-20	100-80
	VERY LOW	Index	1.0-1.9	1.0-1.9	1.0-1.9	1.0-1.9	1.0-1.9
		Choice	V: I:	V: I:	V: I:	V: I:	V: I:
		Value	1.11-1.19	0.89-0.5	79-55	21-60	79-55
7	LOW	Index	2.0-3.9	2.0-3.9	2.0-3.9	2.0-3.9	2.0-3.9
Potential		Choice	V: I:	V: I:	V: I:	V: I:	V: I:
ter		Value	1.2-1.5	0.49-0.3	54-30	61-80	54-30
å	MODERATE	Index	4.0-5.9	4.0-5.9	4.0-5.9	4.0-5.9	4.0-5.9
5		Choice	V: I:	V: I:	V: I:	V: I:	V: I:
rosion		Value	1.6-2.0	0.29-0.15	29-15	81-90	29-15
С Ш	HIGH	Index	6.0-7.9	6.0-7.9	6.0-7.9	6.0-7.9	6.0-7.9
		Choice	V: I:	V: I:	V: I:	V: I:	V: I:
ank		Value	2.1-2.8	0.14-0.05	14-5.0	91-119	14-10
Ô	VERY HIGH	Index	8.0-9.0	8.0-9.0	8.0-9.0	8.0-9.0	8.0-9.0
		Choice	V: I:	V: I:	V: I:	V: I:	V: I:
		Value	>2.8	<0.05	<5	>119	<10
	EXTREME	Index	10	10	10	10	10
		Choice	V: I:	V: I:	V: I:	V: I:	V: I:
	V = value, I = ind	lex	-	SUB-TO	TAL (Sum one index	from each column))

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

Near Bank Stress

Methods for Estimating Near-Bank Stress (NBS)										
(1) Chan	nel patter	n, transverse	bar or split cha	annel/central b	ar creating NB	S	Level I	Recona	issance	
(2) Ratio	of radius	of curvature t	o bankfull wid	th(R _c / W _{bkf})			Level II	Level II General prediction		
(3) Ratio	of pool s	lope to averag	e w ater surfa	ce slope (S _p /	S)		Level II General prediction			
(4) Ratio	of pool s	lope to riffle sl	ope (S _p / S _{rif})			Level II	General p	prediction	
(5) Ratio	of near-b	oank maximum	depth to bankf	full mean depth	(d_{nb}/d_{bkf})		Level III	Detailed	prediction	
(6) Ratio	of near-t	oank shear stre	ess to bankfull	shear stress	(τ_{nb}/τ_{bkf})		Level III	Detailed	prediction	
(7) Veloo	city profile	es / Isovels / V					Level IV		ation	
(1) Transverse and/or central bars-short and/or discontinuous Extensive deposition (continuous, cross-channel) Chute cutoffs, down-valley meander migration, converging flo								NB	S = Extreme	
	(2)	Radius of Curvature R _c (ft)	Bankfull Width W _{bkf} (ft)	<i>Rati</i> o R _c / W _{bkf}	Near-Bank Stress (NBS)					
Level II	(3)	Pool Slope S _p	Average Slope S	Ratio S _p /S	Near-Bank Stress (NBS)		Dominant Near-Bank Stress			
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Near-Bank Stress (NBS)					
=	(5)	Near-Bank Max Depth d _{nb} (ft)	Mean Depth d _{b⊮} (ft)	<i>Ratio</i> d _{nb} / d _{b⊌}	Near-Bank Stress (NBS)					
Level III	(6)	Near-Bank Max Depth d _{nb} (ft)	Near-Bank Slope S _{nb}	Near-Bank Shear Stress τ _{nb} (Ib/ft ²)	Mean Depth d _{b⊮} (ft)	Average Slope S	Bankfull Shear Stress τ _{bl} (Ib/ft ²)	Ratio τ _{nb} / τ _{bkf}	Near-Bank Stress (NBS)	
Level IV	(7)		radient (ft / /ft)	Near-Bank Stress (NBS)	Rosgen, 2006					


- Estimates bank stress associated with bankfull flows
- Seven methods can be used
- Method must incorporate understanding of stream processes
- Select method that best represents site conditions
- Average of methods is not recommended

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

Factors to Consider

- Uses stream pattern, shape and depositional areas
- Maximum depth location influences rating
- Chute cutoff return flows and split channels converging against study banks cause disproportionate energy distribution
- Depositional features cause disproportionate energy distribution
- Evaluate individual channels of a braided reach separately
- If the stream slope directly upstream of a study bank is steeper than the average reach slope adjust NBS upwards

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

NBS Method 1

Level	(1)

Transverse and/or central bars-short and/or discontinuous......NBS = High / Very High Extensive deposition (continuous, cross-channel).....NBS = Extreme Chute cutoffs, down-valley meander migration, converging flow.....NBS = Extreme

- Rapid visual assessment
- Based on channel pattern and depositional features

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

NBS Method 2

(2)	Radius of Curvature R _c (ft)	Bankfull Width W _{bkf} (ft)	<i>Ratio</i> R _c / W _{bkf}	Near-Bank Stress (NBS)	

- Can be completed rapidly
- Use this method if a tight radius in a bend is having the greatest influence

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

NBS Methods 3 and 4

(3)	Pool Slope S _p	Average Slope S	<i>Ratio</i> S _p /S	Near-Bank Stress (NBS)
(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Near-Bank Stress (NBS)

- Use when the stream slope is having the greatest impact
- Steep pool slopes accelerate streambank erosion

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

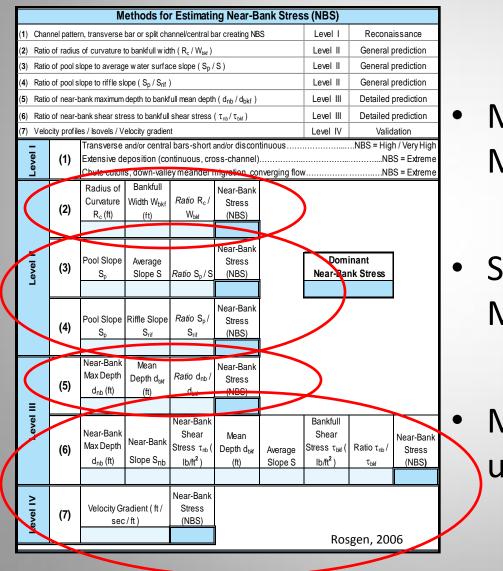
NBS Methods 5 and 6

(5)	Near-Bank Max Depth d _{nb} (ft)	Mean Depth d _{blŕ} (ft)	<i>Ratio</i> d _{nb} / d _{bkf}	Near-Bank Stress (NBS)				
(6)	Near-Bank Max Depth d _{nb} (ft)	Near-Bank Slope S _{nb}	Near-Bank Shear Stress τ _{nb} (Ib/ft ²)	Mean Depth d _{bk} (ft)	Average Slope S	Bankfull Shear Stress τ _{bł} f (Ib/ft ²)	Ratio τ _{nb} / τ _{bkf}	Near-Banł Stress (NBS)

- Depth at the bank related to overall depth
- Due to complexity, Method 5 is more often used

CHESAPEAKE BAY FIELD OFFICE

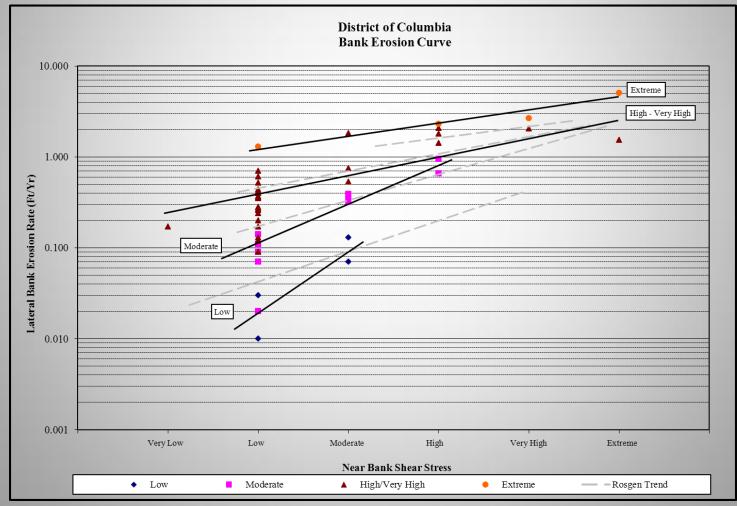
COASTAL PROGRAM


NBS Method 7

			Near-Bank
	(7)	Velocity Gradient (ft /	Stress
(7)	sec/ft)	(NBS)	

- Most detailed method
- Collecting velocity data at bankfull
- Not likely to use

CHESAPEAKE BAY FIELD OFFICE


- Most likely to use Methods 2 and 5
- Slope is a factor use Methods 3 and 4
 - Method 7 will rarely be used

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

Bank Erosion Curves

USFWS, 2005

PISHA WILDLIPE SERVICE

U.S. Fish & Wildlife Service

CHESAPEAKE BAY FIELD OFFICE

COASTAL PROGRAM

U.S. Fish & Wildlife Service - Chesapeake Bay Field Office

177 Admiral Cochrane Drive Annapolis, Maryland 21401 www.chesapeakebay.fws.gov

Rich Starr (410) 573-4583 rich_starr@fws.gov

Sandy Davis (410) 573-4576 sandra_davis@fws.gov