## Coastal Stream Health Data Sheet

Record information on this sheet as you conduct assessments to determine the overall health of your stream. There are three stream assessments for this investigation: (1) physical, rating the condition of the stream habitat based on observed characteristics; (2) biological, using living animals present to indicate stream health; and (3) chemical, testing the water quality based on the chemical content of the stream. Use all three to get a more thorough rating of your stream's health. You may share your findings and compare your data with others on maryland.fieldscope.org.

| Stream Site and Stream Investigator(s) Information |  |  |
| :--- | :--- | :--- |
| Name (Teacher or Observer) | Date | Time of Day |
| School or Organization Name | Group Members |  |
| Stream Study Site Name (used for stream study permit, example: ERMS15 East HS ScienceTeam) |  |  |
| Name of Stream | River or body of water into which this stream flows |  |
| Latitude | Longitude__ degrees WEST |  |


| Weather |  |
| :---: | :---: |
| Today's Air Temperature $\quad$ _ ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ | Today's Humidity |
| Today's Cloud Cover clear $\qquad$ partly cloudy $\qquad$ cloudy $\qquad$ | Yesterday's Precipitation (amount) |

How could yesterday's weather affect today's field study?

PREDICTION: Do you think this stream is healthy? Explain why you think so.

## Stream Health Assessment: Instructions

Next, use the three stream assessments in this data sheet to guide your investigations. At the end of each section, you will use your tests and observations to give your stream a rating for that individual assessment. Then, at the end, use the results from all three assessments to determine an overall stream health rating. How does this rating compare with the prediction you made above?

# Physical Assessment: Coastal Stream Corridor and Habitat Assessment 

Based on Stream Corridor Assessment protocols developed by Kenneth Yetman, DNR, and the Rapid Bioassessment procedures from the U.S. Environmental Protection Agency (EPA), adapted by Amanda Sullivan and Alison Armocida, Maryland Department of Natural Resources.

Instructions: Observe the stream habitat in and around the water, and use the accompanying Stream Corridor Assessment photographs to rank each characteristic. Based on your findings, you will give your stream habitat a rating.

| Characteristic | Good (4) | Fair (3) | Marginal (2) | Poor (1) | Score |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Floodplain Vegetation | Lots of plants, bushes, and trees along banks and floodplain. | Some plants, bushes and trees along banks and floodplain. | Most trees and bushes are gone. | Very little plant life at all along banks and floodplain. |  |
| Channel alteration | Channel formed by natural processes and allowed to bend often in an "S" shape. | Channel straightened in some places but some natural bends still present. | Channel mostly straightened but vegetation still present and no cement. | Channel straightened and flowing along a paved channel. |  |
| Material at the bottom of the stream bed | Mixture of materials with small rocks and firm sand covering most of the bottom. Some vegetation or root mats present. | Mixture of soft sand, mud, or clay. Some vegetation or root mats present. | All mud or clay or sand bottom. No root mats or submerged aquatic vegetation. | Clay or rock. No vegetation or root mats. |  |
| Erosion | Banks only slightly above the level of the water. | Banks somewhat higher above the level of the water | Banks significantly above the level of the water. | Banks extremely high compared to water level. |  |
| Attachment sites for Macroinvertebrates | Plenty of submerged leaf litter and wood. | Some submerged wood and leaf litter. | No wood but some leaf litter present. | No wood or leaf litter present. |  |
| Shelter for Fish | Lots of pools, undercut banks, and submerged, logs and snags present in the water. | Some pools, wood, and undercut banks present. Some submerged cover objects present. | Few pools, wood, and undercut banks present. Few hiding places available. | No pools, wood, or undercut banks or hiding places present. |  |
| Riparian Buffer Width (estimation) | More than 50 feet of trees and brushy vegetation extending out from EACH bank of the stream. | 20-50 feet of trees and brushy vegetation extending out from EACH bank of the stream. | 5-20 feet of trees and brushy vegetation extending out from EACH bank of stream. | 0-5 feet of trees and brushy vegetation extending out from EACH bank of the stream. |  |

## [continued, next page]

| Characteristic | Good (4) | Fair (3) | Marginal (2) | Poor (1) | Score |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Bank stability - <br> Are the banks of <br> the stream <br> eroding, or could <br> they erode easily? | Lots of roots and <br> vegetation or large <br> rocks on the <br> vertical portion of <br> the bank all the <br> way down to the <br> level of the water. | Roots and <br> vegetation or large <br> rocks covering the <br> vertical part of the <br> bank 2/3 of the way <br> down to the level of <br> the water. | Roots, vegetation <br> and/or large rocks <br> going only 1/3 of the <br> way down the <br> vertical part of bank <br> the water. | Steep banks of bare <br> soil with no plants <br> or roots or large <br> rocks. |  |
| Sediment <br> Deposition along <br> the stream bank | Very little sand or <br> other sediment <br> visible above the <br> water in the <br> stream. | Sand or sediment <br> visible in small <br> patches on the <br> banks of the <br> stream. | Sand and sediment <br> visible in beach- <br> like areas at most <br> bends in the stream <br> and along about <br> half of the stream <br> banks. | Sand and sediment <br> visible along most <br> of the stream banks <br> and sometimes in <br> patches visible <br> above the water as <br> islands in the stream. |  |
| Depth <br> combinations - <br> Within 30 feet <br> upstream and 30 <br> feet downstream <br> from where you <br> are standing <br> There are no pictures <br> for this category. | Stream has a mix <br> of (1) large (bigger <br> than half the width <br> of the stream), <br> shallow pools, (2) <br> large, deep pools, <br> (3) small, shallow <br> pools, and (4) <br> small, deep pools. | Stream has 3 of the <br> four types of pools. | Stream has 2 of the <br> four types pools. | Stream has only <br> one type of pool or <br> is the same depth <br> all along its length. |  |

Add all scores to get a total.

## Total Score for Stream

## Analysis:

## If the total score is: then the Overall Stream Rating is:

31-40

## Good

This stream has very good habitat with a wide variety of traits. If the water quality is good, this stream can support many different species of invertebrates and fish, including those sensitive to pollution and habitat changes. The stream is stable; habitat quality will not get worse unless people make changes to the area.

## 21-30 <br> Fair

This stream has good habitat for many different species of invertebrates and fish, including some sensitive to pollution and habitat changes. The stream is most likely stable. Minor changes can increase the habitat quality, such as stabilizing erosion or planting vegetation.

## 11-20 Marginal

This stream can support some species of invertebrates and fish that are tolerant to pollution. The stream is not stable, and will get worse without restoration. Habitat can be improved by planting vegetation near the stream, stabilizing erosion, or reducing water from paved areas.
0-10 Poor

This stream may only support a few species of invertebrates that are very tolerant of pollution. The stream is not stable, and will get worse without restoration. Habitat can be improved by planting vegetation near the stream, stabilizing erosion, or reducing water from paved areas.

## Biological Assessment: Fish Survey

## Collection method:

Fish trap or Seine net (circle method used).
If using a seine net, what is the length of the net? $\qquad$
What size is the net's mesh? $\qquad$
If using a fish trap, what size is the mesh? $\qquad$
Record the number of samples collected from each of the habitat areas in the table $\rightarrow$

When comparing fish and identifying species:

- Pay attention to mouth shape and position:

- And dorsal (back), caudal (tail), and other fin shapes:


| Habitats Sampled |  |
| :--- | :--- |
| Habitat | \# traps or <br> seines |
| Aquatic vegetation |  |
| Submerged objects, <br> logs, snags, other cover |  |
| Pools |  |
| Undercut Banks |  |
| Main channel |  |
| Other habitat (specify): |  |
| TOTAL |  |

Sort all of the fish you catch in your traps and seines into different bins or buckets. Keep all fish species (types) together. Count how many of each type of fish and record below. Identify the fish species if possible.

| Species type |  | Number of fish | Diversity Data |  | Species type | Number of fish |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 1. |  | 13. |  |  |  |  |
| 2. |  | 14. |  |  |  |  |
| 3. |  | 15. |  |  |  |  |
| 4. |  | 16. |  |  |  |  |
| 5. |  | 17. |  |  |  |  |
| 6. |  | 19. |  |  |  |  |
| 7. |  | 20. |  |  |  |  |
| 8. |  | 21. |  |  |  |  |
| 9. |  | 22. |  |  |  |  |
| 10. |  | 23. |  |  |  |  |
| 11. |  | 24. |  |  |  |  |
| 12. |  |  |  |  |  |  |

Explore \& Restore Maryland Streams - Maryland Department of Natural Resources - 2016

## Fish Data Analysis

Instructions: Use the data you collected in your fish samples to determine a stream rating based on the biological factors. There are two parts: Measure of Dominance (below), and Species Richness (on the next page). You may choose to do one or both of these. They are slightly different analyses, but tell you similar information about the stream. You will use the results from these ratings to determine an overall Biological Rating.

## Measure of Dominance:

This is the number of species that comprise $90 \%$ of the catch, which is a reflection of the overall population in the stream. Note: Space is provided to record more species than you are likely to find.

1. Calculate the total number of all fish caught:
2. Determine the number of individuals of each species caught:

| Species 1 | Species 2 | Species 3 | Species 4 | Species 5 | Species 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Species 7 | Species 8 | Species 9 | Species 10 | Species 11 | Species 12 |
| Species 13 | Species 14 | Species 15 | Species 16 | Species 17 | Species 18 |
| Species 19 | Species 20 | Species 21 | Species 22 | Species 23 | Species 24 |

3. Divide the number of individuals of each species by the total number of fish caught to determine what percentage of the catch each species represents.

Number of individuals of a species $\div$ Total number of fish caught $=$ Percentage of the catch

| \% Species 1 | \% Species 2 | \% Species 3 | \% Species 4 | \% Species 5 | \% Species 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \% Species 7 | \% Species 8 | \% Species 9 | \% Species 10 | \% Species 11 | \% Species 12 |
| \% Species 13 | \% Species 14 | \% Species 15 | \% Species 16 | \% Species 17 | \% Species 18 |
| \% Species 19 | \% Species 20 | \% Species 21 | \% Species 22 | \% Species 23 | \% Species 24 |

5. Add the species percentages from highest to lowest until you reach $90 \%$.
6. Count the number of species that comprise $90 \%$ : $\qquad$
Use the table below to determine the Stream Rating:
If the number of species that comprises $90 \%$ is:

5-8
3-5
1-2

Then the stream rating is:
Above Average
Average
Below Average

Write your Stream Rating, here: $\qquad$

## Fish Data Analysis, continued

## Species Richness:

Total Number of Species Collected $\qquad$

If the total number of species is:
$9-15+$
5-8
0-4

Then the stream rating is:
Above Average
Average
Below Average

Write your Stream Rating, here: $\qquad$

## Biological Water Quality Rating:

For each fish analysis that you calculated above, circle the Stream Rating(s) you determined.

| Species Richness: | Above Average | Average | Below Average |
| :--- | :--- | :--- | :--- |
| Measure of Dominance: | Above Average | Average | Below Average |

If you did more than one analysis, and you got different ratings, decide on an average or combined score, making your best conclusion based on your analysis.

Write that rating here: $\qquad$
In order to use this with the physical and chemical assessments to determine an Overall Stream Health Rating, you will need to convert your biological assessment to one of the below ratings. Circle your answer here and copy that to the table on the last page of this data sheet. This is your Biological Rating:

$$
\text { Above Average }=\underline{\text { Good }} \quad \text { Average }=\underline{\text { Fair }} \quad \text { Below Average }=\underline{\text { Poor }}
$$

## Chemical Assessment: Water Quality Testing

(1) Follow instructions provided with each test kit to test different parameters.
(2) Record your data here:

| DATA |  | 肩 |  |  | 光 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trial 1 |  |  |  |  |  |  |  |  |  |  |  |
| Trial 2 |  |  |  |  |  |  |  |  |  |  |  |
| Trial 3 |  |  |  |  |  |  |  |  |  |  |  |

(3) Circle the corresponding value here:

| Water Quality Summation for Chemical Tests |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | GOOD | FAIR | MARGINAL | POOR |
| Dissolved Oxygen (DO) <br> \% Saturation (see conversion chart) | $80-120$ | $70-80$ | $50-70$ | $<50$ |
| pH (units) | $7.0-7.5$ | $120-140$ | $>140$ |  |
| Reactive Phosphate (PO $\mathrm{P}^{3}$ ) (mg/L) | $0-0.2$ | $0.2-0.5$ | $5.5-6.5$ <br> $8.5-9.0$ | $<5.5$ |
| Nitrate ( $\mathrm{NO}^{3}$ ) (mg/L) | $0-3$ | $3-5-2.0$ | $>2.0$ |  |
| Transparency (cm) | $>65.0$ | $65.0-35.0$ | $35.0-15.5$ | $<15.5$ |
| Turbidity ( $\mathrm{JTU} \sim=\mathrm{NTU})$ | $0-10$ | $10-20$ | $20-30$ | $>30$ |
| Total Dissolved Solids (ppm = mg/L) | $0-150$ | $150-250$ | $250-350$ | $>350$ |
| Chloride (Cl) (mg/L) | $0-20$ | $20-50$ | $50-250$ | $>250$ |

Based on your tests and observations, how would you rate water quality overall? For example, if you had some excellent, some fair, mostly good, you might give an overall of good. Circle your answer:

## FINDING THE PERCENT SATURATION OF DISSOLVED OXYGEN



$$
\text { Water temperatures }{ }^{\circ} \text { Cent. }
$$



To read this chart, use a straight edge. Place the straight edge on the $\mathrm{mg} / \mathrm{L}$ of oxygen you have determined for your site, then place the other end of the straight edge on the water temperature you have measured. The point where the straight line passes through the line labeled "\% Saturation" is your percent saturation.

Diagram reprinted from M.K. Mitchell and W.B. Stapp, Field Manual for Water Quality Monitoring

## Overall Stream Health Assessment

Write your ratings from all three of the above tests, here:
Based on your tests and observations, how would you rate the health of your stream overall?

|  | Good | Fair | Marginal | Poor |
| :--- | :--- | :--- | :--- | :---: |
| Stream Corridor Assessment |  |  |  |  |
| Fish Survey |  |  | ---- -N/A---- |  |
| Water Quality Tests |  |  |  |  |

Overall Stream Health:

