

Stream Health Data Sheet

Record information on this sheet as you conduct assessments to determine overall health of your stream. There are three stream assessments for this investigation: (1) **physical**, rating the condition of the stream habitat based on observable characteristics; (2) **biological**, using living animals present to indicate stream health; and (3) **chemical**, testing the water quality based on the chemical content of the stream. Use all three to get a more thorough rating of your stream's health. You may share your findings and compare data with others on the <u>Maryland Student Stream Health</u> map.

Stream Site and Stream Investigator's Information							
Name (Teacher / Observer)	Date		Time of Day				
School or Organization Name		Group Members					
Stream Study Site Name (used for stream study permit, example: ERMS19 Rocky Gap HS Science Team)							
Name of Stream		River or Body of Water (into which stream flows)					
Latitude degrees	NORTH	Longitude degrees WEST					
	Wea	ther					
Today's Air Temperature:	_ ° C or ° F	Today's Humidity:%					
Today's Cloud Cover:		Yesterday's Precipitation: https://water.weather.gov/precip/					
Clear Partly Cloudy _	Cloudy	Inches					
How could yesterday's weather affect today's field investigation?							
PREDICTION: Do you think this stream is healthy or unhealthy? Support your prediction and explain why you think so.							

Stream Health Assessment: Instructions

Next, use the three stream assessments in this data sheet to guide your investigations. At the end of each section, you will use your tests and observations to give your stream a rating for that individual assessment. Then, at the end, use the results from all three assessments to determine an overall stream health rating. How does this rating compare with the prediction you made above?

This "Stream Health Data Sheet" was originally created and designed by Amanda Sullivan for "Explore and Restore Maryland Streams", MD Department of Natural Resources, circa 2016. Modifications have been made to the original by Jen Wolfe, 2019.

Physical Assessment: Stream Corridor Assessment

Based on Stream Corridor Assessment protocols developed by Kenneth Yetman, adapted by Amanda Sullivan and Alison Armocida, MD Department of Natural Resources.

Instructions: Observe the stream habitat in and around the water and use the accompanying Stream Corridor Assessment photographs to rank each characteristic. Based on your findings, you will give your stream habitat a rating.

CHARACTERISTIC	Good (4)	Fair (3)	Marginal (2)	Poor (1)	Score
	Lots of plants,	Some plants,	Most trees and	Very little plant	
Floodplain	bushes, and	bushes, and	bushes are gone.	life at all along	
Vegetation	trees along	trees along		banks and	
vegetation	banks and	banks and		floodplain.	
	floodplain.	floodplain.			
	Channel formed	Channel	Channel mostly	Channel	
	by natural	straightened in	straightened but	straightened and	
Channel Alteration	processes and	some places but	vegetation still	flowing along a	
Chamilei Aiteration	allowed to bend	some natural	present and no	paved channel.	
	often around	bends are still	cement.		
	rocks and wood.	present.			
	Rocks and	Rocks and	Rocks and	Rocks and	
Embeddedness –	cobbles cover	cobbles cover	cobbles more	cobbles entirely	
Are there rocks on	almost all of the	most of the	than halfway	buried by sand	
the bottom	stream bed.	stream bed.	buried	and silt.	
covered in silt?	Very little sand	Some sand/silt	(embedded) into		
covered in site:	or silt between	between and on	sand/silt.		
	rocks.	rocks.			
	Banks only	Banks somewhat	Banks	Banks extremely	
	slightly above	higher above the	significantly	high compared	
Erosion	the surface of	surface of the	above the	to water surface.	
	the water.	water.	surface of the		
			water.		
	Lots of different	Only small,	No rocks or	No rocks, no	
Attachment Sites	sized rocks,	gravel sized	wood but some	wood, no leaf	
for	wood, and	rocks, some	leaf litter	litter present.	
Macroinvertebrates	plenty of leaf	wood and leaf	present.		
	litter.	litter present.			
	Lots of pools,	Some pools,	Few pools,	No pools, no	
	woody debris,	wood, and	wood, and	wood, no	
Shelter for Fish	and undercut	undercut banks	undercut banks	undercut banks	
	banks present in	present.	present.	present in the	
	the water.			water.	
	More than 50ft	20-50ft of trees	5-20ft of trees	0-5ft of trees	
	of trees and	and brushy	and brushy	and brushy	
Riparian Buffer	brushy	vegetation	vegetation	vegetation	
Width (Estimate or	vegetation	extending out	extending out	extending out	
Measure)	extending out	from EACH bank	from EACH bank	from EACH bank	
	from EACH bank	of the stream.	of the stream.	of the stream.	
	of the stream.				

CHARATERISTIC	Good (4)	Fair (3)	Marginal (2)	Poor (1)	Score
Bank Stability - Are	Lots of roots and	Roots and	Roots,	Steep banks of	
the banks of the	vegetation or	vegetation or	vegetation	bare soil with no	
stream eroding or	large rocks on	large	and/or large	plants or roots	
could they easily	the vertical	rocks/boulders	rocks/boulders	or large rocks.	
erode?	portion of the	covering the	going only 1/3 of		
	bank all the way	vertical part of	the way down		
	down to the	the bank 2/3 of	vertical part of		
	surface of the	the way down to	bank to surface		
	water.	the surface of	of the water.		
		the water.			
Velocity and Depth	Stream has areas	Stream has 3 of	Stream has 2 of	Stream has only	
– Within 30ft	of (1) fast/deep	the 4 types of	the 4 types of	1 type of velocity	
upstream and 30ft	water, (2)	speed and depth	speed and depth	and depth	
downstream from	fast/shallow	combinations.	combinations.	combination.	
where you are	water, (3)				
standing	slow/shallow				
	areas, or (4)				
There are no pictures	slow/deep				
for this category.	areas.				

Add all scores to get a total. Total Score for Stream

Α	N	ΔΙ	Υ	SI	ς	•

If the total score is:

Then the overall stream rating is:

30 - 36 GOOD

This stream has excellent habitat with a wide variety of traits. If the water quality is good this stream can support many different species of insects and fish, including those sensitive to pollution and habitat changes. The stream is stable; habitat quality will not get worse unless humans make changes to the area.

23 – 29 FAIR

This stream has good habitat for many different species of insects and fish, including some sensitive to pollution and habitat changes. The stream is most likely stable. Minor changes can increase the habitat quality, such as stabilizing erosion or planting vegetation.

16 – 22 MARGINAL

This stream can support some species of insects and fish that are tolerant to pollution. The stream is not stable and will get worse without human restoration. Habitat can be improved by planting vegetation near the stream, stabilizing erosion, or reducing water from impervious surfaces.

9 – 15 POOR

This stream may only support a few species of insects that are highly tolerant to pollution. The stream is not stable and will get worse without human restoration. Habitat can be improved by planting vegetation near the stream, stabilizing erosion, or reducing water from paved areas.

Stream Corridor Habitat Rating:

Biological Assessment: Macroinvertebrate Survey

Collection Method

Kick seine or D-Net (circle the method used)

If using a kick seine, collect 3 samples.

If using a D-Net, collect 20 samples and record the number of samples taken from each of the habitat areas in the table to the right.

Benthic Habitat Sampled				
Habitat	# of Samples			
Riffle				
Root wads/Woody debris/Leaf pack				
Submerged vegetation				
Undercut banks				
Other (Specify):				
TOTAL	20			

Your Stream's Biotic Index

Check all of the macroinvertebrates that you find in your stream and calculate the stream's water quality rating. (You may also record the number of each captured, but to calculate the rating at the bottom, only count each KIND of animal once, regardless of the quantity found).

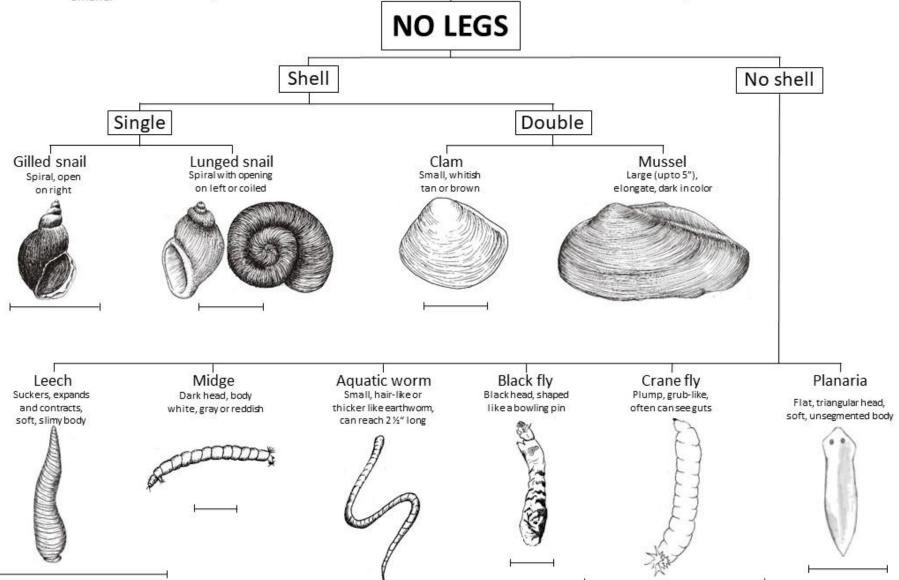
1	Sensitive	✓	Less Sensitive	✓	Somewhat Tolerant	✓	Tolerant
	Case maker caddisflies		Net-spinning caddisflies		Freshwater clams		Aquatic sow bugs
	Mayflies		Crane flies		Freshwater mussels		Black flies
	Stoneflies		Dragonflies		Planarian		Midge flies
	Water pennies		Riffle beetles		Gilled snails		Leeches
	Hellgrammites				Crayfish		Lunged Snails
					Scuds		Damselflies
							Aquatic worms
# of checkmarks		# of checkmarks		# of checkmarks		# of checkmarks	
# above x 3 =		# above x 2 =	# above x 1 =			# above x 0 =	
							

Biological Water Quality Rating:

Add up the numbers you calculated for all four categories above. Write the total number here: _____

Circle the rating that corresponds to the total of your columns.

Good: >22 Fair: 17 – 22 Marginal: 11 – 16 Poor: <11

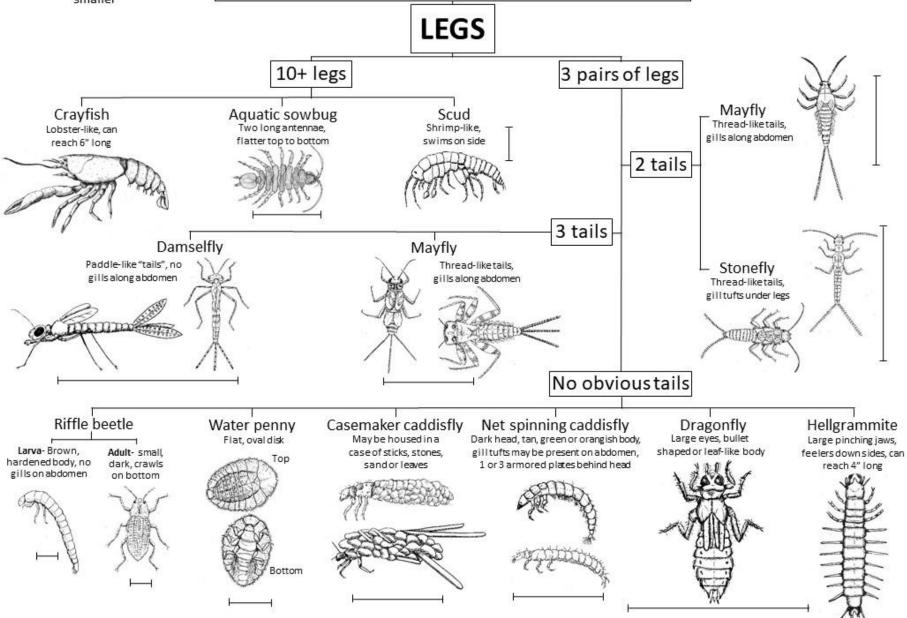


Sizes shown are for mature larvae/nymphs or adult animals, but individuals in earlier stages of development may be significantly smaller

Explore & Restore Maryland Streams Key to Stream Macroinvertebrates

Companion to the Explore & Restore Stream Health Data Sheet

Maryland Department of Natural Resources; Resource Assessment Service and Chesapeake & Coastal Services 580 Taylor Avenue; Annapolis, Maryland 21401; http://dnr2.maryland.gov/education/Pages/Biological_Assessment.aspx



Sizes shown are for mature larvae/nymphs or adult animals, but individuals in earlier stages of development may be significantly smaller

Explore & Restore Maryland Streams Key to Stream Macroinvertebrates

MARYLAND
DEPARTMENT OF
NATURAL RESOURCES

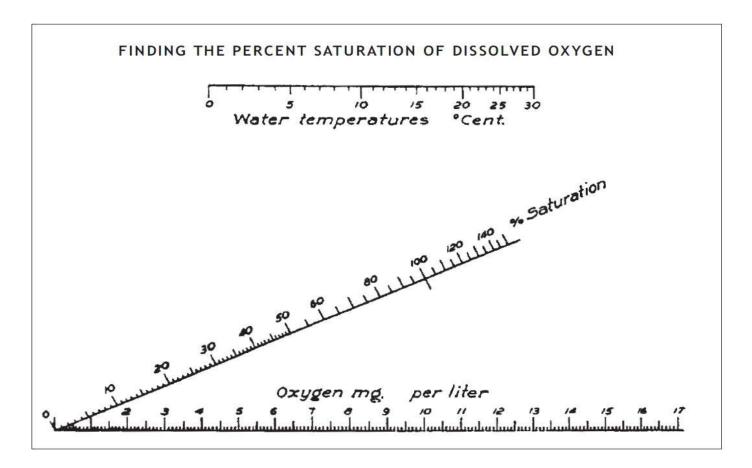
Companion to the Explore & Restore Stream Health Data Sheet

Chemical Assessment: Water Quality Testing

- (1) Follow instructions provided with each test kit to test different parameters.
- (2) Record your data here:

	Water Temperature (C°)	Dissolved Oxygen (DO) (mg/L)	Dissolved Oxygen (DO) % Saturation See conversion chart	Нd	Phosphate (mg/L)	Nitrate (mg/L)	Transparency (cm)	Turbidity (JTU ~ = NTU)	Total Dissolved Solids (TDS) (ppm = mg/L)	Conductivity (µs/cm)
Trial 1										
Trial 2										
Trial 3										

(3) Circle the corresponding value here:


Water Quality Summation for Chemical Tests							
Parameter	GOOD	FAIR	MARGINAL	POOR			
Dissolved Oxygen (DO) (mg/L)	>=7	>=6 - <7	>=5 - <6	<5			
pH (units)	>=7 - <=7.5	>=6.5 - <7.0 >7.5 - <=8.5	>=5.5 - <6.5 >8.5 - <=9.0	<5.5 >9.0			
Phosphate (PO ₄ X³) (mg/L)	0 - <=0.1	>0.1 - <=0.2	>0.2 - <=1.0	>1.0			
Nitrate (NO³) (mg/L)	<1.5	>1.5 - <=2.6	>2.6 - <=3.8	>3.8			
Temperature (°F/°C)		Not to exceed >	68°F/20°C				
Transparency (cm)	>=65	<65 - >=35	<35 - >=5	<5			
Turbidity (JTU ~ = NTU)	0 - <=4	>4 - <=10	>10 - <=20	>20			
Total Dissolved Solids (ppm = mg/L)	0 - <=150	>150 - <=250	>250 - <=350	>350			
Conductivity (μs/cm)	0 - <=170	>170 - <=240	>240 - <=500	>500			

Water Quality thresholds above are based on MDE (Maryland Department of the Environment) Maryland specific data updated in 2018.

Based on your tests and observations, how would you rate the overall water quality for this stream? For example, if you had some Good, some Poor, but mostly Fair, you might give an overall of Fair.

Chemical Water Quality Rating: Good Fair Marginal Poor

To read this chart, use a straight edge. Place the straight edge on the mg/L of oxygen you have determined for your site, then place the other end of the straight edge on the water temperature you have measured. The point where the straight line passes through the line labeled "% Saturation" is your percent saturation.

Diagram reprinted with permission from M.K. Mitchell and W. B. Stapp, Field Manual for Water Quality Monitoring

Overall Stream Health Assessment

Record your ratings from all three of the tests above (Physical, Biological, and Chemical) here:

Based on your tests and observations, how would you rate the health of your stream overall?

Assessment	Good	Fair	Marginal	Poor
Stream Corridor Assessment – Physical				
Macroinvertebrate Survey – Biological				
Water Quality Tests - Chemical				

Comments:

OVERALL STREAM HEALTH

This publication was developed under Assistant Agreement No. CB96336601 awarded by the U.S. Environmental Protection Agency. It has not been formally reviewed by EPA. The views expressed are solely those of the Maryland Department of Natural Resources and EPA does not endorse any products or commercial services mentioned.

