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Freshwater tidal marshes border stream channels near the upstream end of the 

tidal limit, and are likely to undergo significant changes in salinity, tidal inundation, and 

biogeochemical processes due to sea-level rise. Tidal channel networks enhance nutrient 

processing by delivering nitrate-rich water far into the marsh. The purpose of this study is 

to examine the geomorphological, hydrological, and biogeochemical processes that 

influence the delivery and processing of nutrient-rich waters into tidal marshes. In this 

study, field measurements were made to calculate water and nitrate flux for stream 

channels of varying order. These mass balance calculations indicate there is an 

exponential increase in net nitrate retention with channel order. This calculation could be 

compared with calculations of denitrification at different sites within the system to 

evaluate the role of these processes in total nitrate loss. 
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CHAPTER 1 

1. INTRODUCTION 

1.1.1 Importance of freshwater tidal wetlands 

Freshwater tidal wetlands are diverse habitats that appear to play important roles 

in coastal nutrient budgets (Boynton et al., 2008). Hydrologic and ecological processes in 

tidal marsh systems are influenced by the dense networks of tidal channels that they often 

contain (Fig. 1.1). The Patuxent River is an example of a river system that is bordered by 

extensive channel network tidal wetlands in the freshwater segments of the river. Much 

of the freshwater tidal wetland area in the Upper Patuxent is in parkland (e.g. Jug Bay, 

Patuxent Wetland Park, and Patuxent River Park), which helps to limit human impacts to 

upstream modifications of the nutrient, sediment, and water fluxes into the Patuxent. 

Although tidal freshwater wetlands are areas for nutrient retention (e.g. Swarth and 

Peters, 1993; Vitousek et al., 1997), the importance of the tidal channel systems in 

nutrient retention processes has not been evaluated. 

There have been few studies that quantify nitrogen retention within tidal 

freshwater wetlands (Greene, 2005a; Megonigal and Neubauer, 2009). Instead studies 

have focused on saltwater wetlands and terrestrial systems, or on one specific mechanism 

of loss from freshwater systems. There is also a lack of studies quantifying nitrogen loss 

in situ to ultimately characterize ecosystem processing. Previous research has, however, 

pointed to the idea that the majority of nitrogen processing occurs on the marsh surface 

area (Jenkins and Kemp, 1984; Joye and Paerl, 1994; Dong, 2000; Eriksson et al., 2003; 

Greene, 2005b), with additional sites including the near-channel groundwater (Phemister, 

2006) and the channel itself (Seitzinger, 1988). These sites are particularly important to 
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understand because they are likely to undergo significant hydrological and salinity 

changes associated with sea-level rise. 

1.1.2 The tidal network and sea level rise 

Rising sea level is affecting geomorphic, hydraulic, and ecosystem processes in 

tidal wetlands because as the wetlands are submerged there is a shift in wetland 

abundance and location (Kearny et al., 1988). Microtidal (<2 m tidal range) wetland 

systems, such as most freshwater tidal marshes, appear to be the most affected by sea 

level rise (Craft, et al. 2009; Stevenson and Kearney; in press). Wetland loss has great 

implications for ecosystem services because freshwater wetlands can sequester three 

times more nitrogen in the sediment by burial than can saltwater marshes (Craft, et al. 

2009).  

In tidal freshwater wetlands, sea level rise is causing wetland submergence, salt 

water intrusion, and inward habitat migration. Salt water intrusion affects coastal areas 

because as the water level increases, the barrier between fresh and salt water moves 

upstream, and once diverse freshwater habitats become less diverse salt water 

ecosystems. The Chesapeake Bay is a drowned river valley, and as such, the wetlands are 

migrating inland with sea level rise, which is approximated at 3 mm/year (Douglas, 

2001). Tidal network marshes are being lost because sediment accretion isn’t occurring 

quickly enough to match the accelerated sea level rise, and these wetlands are becoming 

submerged. This trend is becoming evident in the Patuxent River wetland where the 

interior of the tidal channel network is beginning to be submerged. 

Sea level rise is predicted to have negative impacts on the wetland ecosystems, 

but tidal freshwater wetlands may play an important role in nitrogen processing. The tidal 
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channel network acts as a vehicle to transport nitrogen to the interior smaller order 

channels. Sea level rise will contribute a greater volume of water into this network. The 

greater volume of water will be forced into these smaller order channels, so that on a 

flooding tide a greater portion of the marsh is submerged. The greater area of marsh 

inundation may actually increase denitrification rates. Even though tidal freshwater 

marshes are ‘hot spots’ for denitrification and the rates may increase with sea level rise, if 

the wetlands can’t keep pace with increasing water levels, denitrification rates will be 

drastically reduced because marsh surface area will be reduced. 

1.1.3 Tidal marsh terminology 

The tidal channel network within this study is defined as the highly branching 

system of streams found within the tidal freshwater wetland (Fig. 1.1). The mainstem or 

main channel is the stream that passes adjacent to the marsh. Within this study, 

‘channels’ and ‘streams’ are used interchangeably, and are defined as the body of water 

constrained by the surrounding wetlands. Interior channels are those found within the 

highly branching tidal network. Exterior channels are those that are located directly off of 

the main channel. 

Several methods are used to define stream order; these methods generate different 

numerical values for stream orders larger than two. The ordering scheme developed by 

Horton (1945) indicates the degree of branching from the principal order stream (Fig. 

1.1). A first order channel is the stream headwaters. A second order channel is the 

downstream channel of where two first order channels meet. A third order channel is the 

downstream channel where two second order channels meet, and so on. Order can be 

determined by aerial photos such as that pictured below, but the certainty in this method 
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depends on the accuracy of the photo. Aerial photos often do not show all the first order 

channels, because they are very narrow and the channel can be hidden by vegetation 

(Lillibridge, 2009).  
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0 100 m

 

Figure 1.1. Example of the numbering of stream channel order (Smith-Hall, 2002) and an 
aerial photograph showing the complexity of tidal channel networks of the Upper 
Patuxent River. Image from U.S. Geological Survey photo, April 2005, obtained from 
Google Earth. 
 

1.1.4 Influence of tidal network on nitrate retention  

The tidal network is an important geomorphic factor that may exert controls on 

the locations and rates of ecologic processes within the wetland system. It has been 

suggested that tidal marshes can serve as sinks for nutrients (Valiela et al., 1973; Merrill 
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and Cornwell, 2000). Within tidal marshes, water flux within the tidal channel network is 

the only vehicle that transports nutrients into smaller order channels, and ultimately 

floods into the surrounding marsh where nutrient removal is thought to occur. The 

geomorphic structure of the network determines the amount of water that enters the 

channel, the amount of overbank flooding that occurs, and the residence time of the water 

in the marsh system. Overall, little is known about the control that the channel 

geomorphic organization has on net nitrate retention within these tidal marsh systems.   

1.1.5 Objectives 

The overall objective of this study is to determine how the geomorphic and 

hydrologic organization of the tidal network influences net nitrate retention within tidal 

marsh systems.  This study links together geomorphic, hydrologic, and biogeochemical 

investigations. The following hypotheses were examined: 

1. Previous research suggests that tidal channel velocities are nearly constant 

through the network; therefore, water flux (and nitrate flux) into tidal marsh 

networks is primarily determined by channel cross sectional area. 

2. Nitrate processing varies by type of site within the tidal marsh system, with marsh 

surface denitrification> groundwater denitrification > in-stream denitrification. 

3. Marsh surface area, however, is extensive; therefore, net nitrate retention within a 

marsh system should increase at the same rate as the increase in marsh surface 

area when comparing marsh systems of varying size. 
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2. PREVIOUS WORK 

The quality of coastal waters, such as the Chesapeake Bay, has been adversely 

affected by anthropogenic activities (Nixon, 1995). The most substantial anthropogenic 

alterations have occurred through land-use changes to agricultural and urban lands. 

Landuse change alters how the atmosphere interacts with the aquatic and terrestrial 

systems. This land-cover change has caused increased fluxes of particulates and nutrients, 

such as nitrogen (N) and phosphorus (P) (Vitousek et al. 1997; Galloway et al. 2008). 

Reduced water clarity and increased sediment loading have contributed to the losses of 

submerged aquatic vegetation. Increased sediment loading promotes turbidity and 

sedimentation, while increased N and P loading stimulates phytoplankton growth, both of 

which reduce water clarity  

The combination of increased organic sediments and the decomposition of 

phytoplankton often lead to seasonal hypoxia or in extreme conditions anoxia, in the 

process known as eutrophication (Boynton et al., 1995). In the Mid-Atlantic region, 

landuse change has increased the rate of nitrogen deposition on the land and increased the 

delivery of nitrogen to bodies of water (Boyer et al., 2002), which causes many 

Chesapeake Bay systems to be eutrophic.  

Resolving the issue of population-based eutrophication is imperative to improving 

the health of the Chesapeake Bay, but it is a daunting task. At one time, managers 

believed that reducing direct nutrient inputs into an ecosystem would allow the system to 

return to an idealized reference state. It is now known that even by removing direct 

human pressures such as nutrient inputs, ecosystems may not revert back to this idealized 

reference condition. Often times there are shifting baselines or the system may have 
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reached a threshold that resulted in a drastic regime shift. This suggests that reversing 

eutrophication by nutrient removal alone isn’t possible, and managers must now focus on 

restoring and preserving key ecosystem functions (Duarte et al., 2008).   

To evaluate this problem, we must define the ecosystem function of nitrogen 

processing in various locations within the tidal wetlands, and determine how they are 

controlled by external factors, such as tidal network geomorphology and hydrology.   

1.2.1 Geomorphic and hydrologic organization 

Freshwater tidal wetlands include both fringing wetlands, and marshes that 

contain tidal channel networks that affect the movement of water and nutrients into the 

marsh ecosystem (Smith-Hall, 2002). These tidal network channels are hydraulically 

connected to the marsh groundwater (Nuttle, 1988); thus, nitrogen processing can take 

place within the tidal channels, on the marsh surfaces, and in the near-channel 

groundwater. The relative importance of these sites for net nitrate retention is not well 

understood.  

Although the relative importance of the above mentioned sites is unknown, 

models infer that nitrogen is lost as water moves through the tidal channel networks, and 

tidal channels are influential on denitrification rates (Seitzinger et al., 2002). River 

networks can remove ~ 48% and as high as ~ 80% of nitrogen inputs while exporting 

only ~ 20-40% of the total nitrogen inputs downstream or to coastal systems. Low order 

streams (1st and 2nd order) receive the greatest proportion of direct watershed nitrogen 

loading, and can also remove the largest amount of this nitrogen before reaching larger 

orders. Smaller orders (1st to 4th) encompass 91% of the channel networks while larger 

orders (5th to 9th) only compose 9% of the networks. Models have predicted that the 
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smaller orders remove less nitrogen than larger orders, but there is a greater extent of 

smaller orders than larger orders within a network, so that sum of smaller orders remove 

60-70% of nitrogen while the sum of larger orders only removes 30-40% of nitrogen 

(Seitzinger et al., 2002). Additionally, Peterson et al. (2001) found that smaller streams 

with high nitrogen loads removed a proportionally larger amount of nitrogen because of 

the large surface area to volume ratio. Overall, the exact importance of the tidal network 

is still largely unknown. 

To compare the importance of the components of the tidal network, the channels 

of the network must first be classified. Tidal marsh networks are not homogeneous; 

however, the channels have systematic geomorphic properties, such as relationships 

between stream order and stream length, that aid in characterizing the channels. First 

order channels are the most heterogeneous of all orders, and the degree of heterogeneity 

differs depending on whether the channel is located directly off of the mainstem (exterior 

channels) or within a highly branching network (interior channels). Although there is 

variability within smaller orders, tidal channel order characterizes channel width and 

channel length, which control the discharge and extent of marsh surface area (Myrick and 

Leopold, 1963; Williams and Zedler, 1999; Smith-Hall, 2002).  

The complexity of the geomorphology of the wetland channel network is 

important because if nitrogen isn’t processed in one region, it is transported by the tides 

to a different location within the system where it is then processed. Each individual 

channel order is therefore integral to the overall ecosystem function. The geomorphology 

of the tidal network is a significant controlling factor in denitrification because the 

channel geometry governs the hydrology of the network. The width and depth of the 
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channel mouth can restrain the amount of water that can flux into and out of the channel 

since discharge is proportional to channel area and therefore channel width (Myrick and 

Leopold, 1963). Since the classic Myrick and Leopold (1963) paper was published, very 

little research has been conducted to evaluate the geomorphology of tidal freshwater 

wetlands, and how this controls ecosystem functioning.  

1.2.1a Hydraulic geometry 

Hydraulic geometry can be used to determine the relationship between channel 

forms and discharge (Myrick and Leopold, 1963). At-a-station hydraulic geometry relates 

the adjustment of hydraulic characteristics (such as width, depth, and velocity) to 

changing discharge at one cross-section location. At-a-station hydraulic geometry uses 

the continuity equation Q = w*d*v: 

w α Qb 
d α Qf 
v α Qm 

 

where Q is the discharge, w is surface width, d is mean depth, v is mean velocity, and b, f, 

and m are exponents. The exponents add to equal one, b + f + m = 1. These values are 

related to the qausi-equilibrium state of the channel, or the equilibrium conditions 

necessary to transport the sediment and water of the system. Natural tidal freshwater 

wetlands are generally morphologically balanced, relatively low energy systems 

(Garofalo, 1980), and therefore annual stream channel migration is small. Channels 

naturally migrate laterally, but tidal freshwater wetlands only migrate about 1.04 feet per 

year (Garofalo, 1980). Characterizing channel networks is very important because the 

relationships can be used to predict other factors within the wetland system, such as 

nitrogen loss, the distribution of vegetation in wetland systems (Sanderson et al., 2000), 
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or the composition of fish communities within varying channel orders (Visintainer et al. 

2006). These relationships are critical for gaining an understanding of geomorphologic 

controls on the tidal network system; however, research describing tidal channel 

hydraulic geometry remains limited, and generally geomorphology literature examines 

streams or salt marsh systems. 

1.2.2 Denitrification in the tidal channel network 

Tidal freshwater marshes can serve as sinks for nutrients contributed by stream-

flow and groundwater discharge from terrestrial ecosystems (Odum, 1980; Boesch, 

2000). The role of sub-tidal sediments as a potential sink for nitrogen is well established 

(Jenkins and Kemp, 1984; Eriksson et al., 2003; Greene, 2005b). Surfaces of tidal 

marshes are additional sinks for nitrogen (Joye and Paerl, 1994; Dong, 2000). 

Sedimentation, plant assimilation, and denitrification are reported to be the most 

important sinks for nitrogen (Bowden, 1986). Denitrification can occur on marsh surfaces 

(Fig. 1.2; Joye and Paerl, 1994), in the shallow groundwater (Addy et al. 2002), and in 

the channels (Seitzinger, 1988). The proportion of nitrate that undergoes denitrification is 

controlled by the hydrology and geomorphology of the system (Seitzinger et al., 2006).  
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Figure 1.2. Conceptual diagram of locations of nitrogen processing within a tidal 
freshwater wetland channel. The green is the marsh surface area, light blue is near 
channel groundwater, and the dark blue is in-stream. 

 

Tidal networks are critical for denitrification because they increase the amount of 

marsh surface area per volume of channel water, and in some freshwater tidal streams, 

marsh area exceeds the river bottom area.  In tidal channel ecosystems, nitrate-rich water 

infiltrates into the marsh system, and then drains back into the channels in regions within 

20 m of a tidal channel (Harvey et al., 1987; Nuttle, 1988; Phemister, 2006). 

Groundwater denitrification rates, in general, are limited by amount of this exchange 

(Lowrance et al., 1984; Cooper, 1990; Hedin et al., 1998).  In Jug Bay, groundwater 

fluxes from the marsh to the channel are a function of channel depth, stream length, and 

hydraulic parameters (hydraulic conductivity, K, and gradient).  These parameters (K and 

gradient) don’t change much due to stream order; therefore, total stream channel length 

and channel depth are the major controls on groundwater flux, and groundwater 

processing may be a major source of nitrogen loss (Phemister, 2006).  

In-stream denitrification has been examined for both tidal and terrestrial stream 

channels, and in both cases, denitrification is highest where water flow is the slowest, and 

where there is the largest interaction between water and sediment.  In general, water 
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column denitrification is highest in shallow, low order streams (Seitzinger, 1988); 

however, the overall greatest denitrification rates are in the sediments, and in-stream 

denitrification is thought to be minimal in comparison.  

1.2.2a Approaches to quantifying denitrification 

Selected previous work on denitrification rates within different locations in 

freshwater tidal wetlands is summarized in table 1.I; a comprehensive review can be 

found in Greene (2005a). Although previous research suggests that denitrification, burial, 

and assimilation are important loss pathways for nitrogen, the role of denitrification may 

be overemphasized. Current research has pointed to the idea that alternative microbial 

pathways may play an integral role in net nitrogen retention in freshwater ecosystems 

(Burgin and Hamilton, 2007). This idea has been exemplified through nitrogen loading 

experiments conducted in aquatic sediments where denitrification accounted for less than 

half of the total nitrate disappearance (Seitzinger, 1988). Although previous research has 

separately quantified loss pathways, little research has taken a mass balance approach to 

determine the ultimate importance of denitrification. Studies have separately quantified 

nitrogen burial (Table 1.I; Eriksson et al., 2003; Greene, 2005b), groundwater inputs 

(Taniguchi, 2008), and benthic microbial processing (Joye and Paerl, 1994; Arango et al., 

2007), but have failed to link these processes to the organization or geomorphology of the 

freshwater tidal network.  



14 

Table 1.I. Selected denitrification rates measured during the growing season for various 
types of freshwater marsh systems (including natural and constructed wetlands) using 
acetylene inhibition, core incubation, 15N tracer, N2 flux, and mass balance calculations 
 
Denitrification Rate Location of Study Technique Source 

Measurements from Soil Surface and Subsurface (0-15cm)-Localized Area of Study 
46 ± 15 to 107 ± 31 
μmol N m−2 h−1 

 

April 

Ponded freshwater 
marsh, Davis Pond 
Diversion Structure, 
LA (created) 

Acetylene inhibition DeLaune et al., 2005 

Max rate: 450 μmol N 
m−2 h−1 

 

Sept.  

Northern portion of 
the Barataria Basin 
Estuary receiving 
water from Davis 
Pond Diversion, LA 
(created system) 

15N labeling; 
N2:N20 gas 
sampling 

Yu et al., 2006 

3.3 to 57.1 μmol N m−2 h−1 

 

March-July 

Intertidal region of 
freshwater tributary 
Tomales Bay, CA 

Acetylene inhibition Joye and Paerl, 1994 

28 (fall) to 178 (spring) 
µmol N m−2 h−1 

Tidal freshwater 
wetland, Patuxent 
River, MD 

Core incubation 
N2:Ar 

Merrill and Cornwell, 
2000 

≤ 20 to 260 μmol N m−2 h−1 

Summer 
Freshwater riparian 
wetlands, NJ/PA 

Core incubation 
N2:Ar 

Seitzinger, 1994 

0 ± 1 to 99 ± 5 μmol N 
m−2 h−1 

Acetylene inhibition 

77 to 290 μmol N m−2 h−1 15N tracer 
395 ± 45 to 490 ± 120 μmol 
N m−2 h−1 

 

September 

Vilhemsborg sø, 
Denmark 

N2 flux 

Setizinger et al., 1993 

0 to 330 μmol N m−2 h−1 Literature review of 
52 freshwater 
wetlands 

Various Greene, 2005a 

Max rate in spring:  
500 μmol N m−2 h−1 

 

Annual average: 110 μmol 
N m−2 h−1 

Tidal freshwater 
marsh, Patuxent 
River, MD 

Core incubations 
N2:Ar 

Boynton et al., 2008 

Measurements from Soil Surface and Water Column-Whole Ecosystem Approach 

65 to 881 ± 162 µmol 
(NO2+ NO3) m−2 tide−1 

 

July-August 

Intertidal freshwater 
emergent marsh, 
Upper Cooper River, 
SC 

Tidal mass balance 
calculation 

McKellar et al., 2007 

54 to 278 μmol N m−2 h−1 

 

April and July 

Created freshwater 
wetland, Lake Waco 
Wetland, TX 
(created) 

Core incubations 
(N2:Ar) and 
chemical analysis of 
water column 
nutrients  

Scott et al., 2008 
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 There is a large variability within the above reported rates because each 

experiment has a different area of study, not only by location within the wetland, but also 

by type of wetland (i.e. restored wetlands, or wetlands experiencing controlled hydrologic 

releases compared to natural wetlands such as those studied by Merrill and Cornwell, 

2000). The researchers may have overestimated in situ rates because the acetylene 

inhibition and core incubations measure potential denitrification rates. These 

overestimations are then used to extrapolate ecosystem denitrification rates with a 

synergistic effect of overestimation. Since wetlands have high spatio-temporal variability, 

the entire ecosystem functioning is still unknown. The variability documented within the 

above table suggests that researchers may have inaccurately estimated denitrification on a 

large scale. 

It is difficult to measure denitrification over a large spatial scale, so researchers 

target denitrification ‘hot spots.’ It is well known that denitrification occurs within the 

marsh soils of the marsh surface/subsurface, the near-channel groundwater (within 20 

meters of the channel), and the channel itself (Fig 1.2). In an effort to encompass the 

variability of denitrification, researchers often compartmentalize the ecosystem to 

describe the processing (i.e. Boynton et al., 2008). Again, conceptual models can be 

powerful tools, but within the Chesapeake Bay, the estuary is divided by salinity regions 

such as Upper, Mid, and Lower regions, and the geomorphology of the system is often 

overlooked.  

This study will link together the geomorphology (by characterizing channel 

geometry by order), hydrology (by measuring total volume of water fluxes into and out of 

the channel order), and biogeochemistry (by measuring nitrogen concentrations over a 
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tidal cycle) to characterize the ecosystem function of net nitrogen retention within the 

tidal channel network, and determine if geomorphology alone can be used to predict net 

nitrate retention.  

3. EXPERIMENTAL APPROACH 

1.3.1 Study site 

The freshwater tidal wetlands investigated for this study receive streamflow 

inputs from the tidal Patuxent River. The Patuxent River watershed is located between 

Washington, D.C. and Baltimore and is 2,260 km2 in area. The land-use in the basin is 

dominated by forest (63.5%), followed by agriculture (20.3), urban (15.7%), and 

intertidal wetlands (0.4%). Agriculture land-uses have decreased in the 20th century as the 

basin underwent reforestation and suburbanization, and much of the agriculture land was 

lost as the population expanded. The population has increased 10 fold since 1950. The 

population density for this basin is 262 no. km-2 with a sewage flow of 235 x 106 L d-1 

(Fisher et al., 2006). 

The research site (Fig. 1.3) is located within Patuxent Wetland Park in Anne 

Arundel County (38°48'42"N  76°42'35"W).  The area is a tidal freshwater environment, 

and generally experiences salinities less than 0.2 ppt.  Tides in the Park are semi-diurnal 

and generally range 0.6 meters (NERRS, 2004).  The Patuxent Wetland Park has many 

heterogeneous tidal channels ranging in order from 0 to greater than 5 (Smith-Hall, 

2002).  There is a mobile home park development on the banks of the Patuxent including 

a wastewater treatment plant that discharges directly into the waterway. 
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Figure 1.3. Aerial map of research site showing channel network complexity and 
heterogeneity of tidal channels. 
 

The study site is a naturally meandering channel with a variety of orders of 

branching tributaries. The branching tributaries, ranging from 1st-5th order, were used in 

this study. The lower marsh of both sites is dominated by Nuphar advena/luteum, 

Peltandra virginica, Polygonum sagittatum, Pontederia cordata, and Zizania aquatica.  

The river bed is seasonally dominated by invasive Elodea species, which affect water 

velocities and flows.   

1.3.2 Geomorphologic and hydrologic measurements of tidal channels 

Relationships among stream order, marsh area, and stream length for the region 

have been developed for the Jug Bay marshes (Smith-Hall, 2002; Phemister, 2006). 

Ultimately, relationships of channel order, width, length, cross-sectional area, and 

discharge were derived. Tidal network characteristics provide a structure for predicting 
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hydraulic characteristics (channel area, discharge), and provide a framework for sampling 

hydrological and geochemical fluxes within these systems.   

 Tidal duration, height, maximum velocity, and discharge were measured to 

calculate the water flux for each measured tidal cycle. Tidal duration and height was 

determined from the Maryland Department of Natural Resources Tide Finder (Appendix 

A). Tidal height was also measured in the field using a staff gauge. The tidal discharge 

was determined by measuring the cross-section and mean velocity at every sampling 

point. The mean velocity was determined by factoring in the vegetation roughness height. 

The roughness height was estimated using velocity profiles. Cross-sectional profiles of 

the channel were measured at bankfull condition (defined as the average high tide water 

line was at the vegetation).  

 Hydraulic geometry relationships were determined using the collected field data 

of discharge, width, depth, and velocity. Channel width was determined as a function of 

gauge height drop and cross-sectional area change. Channel depth was derived by 

dividing the cross-sectional area by the channel width. Relationships were determined by 

fitting a power function to each data set.   

1.3.3 Geochemical sampling locations 

Synoptic sampling was used to measure the spatial variability of denitrification within 

the tidal network. Sampling was completed within the system at designated sites to 

evaluate fluxes as a function of stream order. Sample sites were representative of the tidal 

network. A total of five sites were sampled; 2 first order streams, 1 third order, 1 fourth 

order, and 1 fifth order (Fig. 1.3). Samples were collected beginning an hour before high 
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tide at half hour intervals for a minimum of three hours into the falling tide and an 

average of six hours until low tide.   

By measuring the incoming and outgoing nitrogen concentrations of the channel 

water, the samples encompass the spatial diversity and extent (such as vegetation types 

and elevation variation with distance from the channel) of each channel order.  

1.3.4 Analytical methods to determine water chemistry for flux measurements 

Water chemistry was sampled in concert with measurements of gauge height and 

velocity.  Samples were taken one hour prior to high tide and over the entire falling tide 

at each location in half hour intervals.  

Samples were filtered in the field using a syringe and a 0.45 micron glass-fiber 

filter (for ammonium) or 0.20 micron glass-fiber filter (for nitrite and nitrate), and then 

frozen until analysis. All samples were run within a month of collection to avoid sample 

degradation.  

Water samples were analyzed for nitrite and nitrate using an ion chromatograph. 

The detection level for the nitrite and nitrate analyses was 2 µM.  

Water samples were analyzed for ammonium using the phenolhypochlorite 

method adapted from Solorzano (1969). After reagent addition, the samples were set in 

the dark for a minimum of two hours and a maximum of 24 hours to develop. The 

detection level for ammonium is 0.5 µM. All analyses outlined in the above methods 

were performed at Horn Point Laboratory, University of Maryland Center for 

Environmental Sciences under the supervision of Dr. Jeff Cornwell and Mike Owens.   
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1.3.5 Nitrate retention 

 Nutrient flux measurements were first calculated by multiplying nitrate 

concentrations by discharge. Nitrate was the most soluble form of nitrogen, and therefore 

was used for further calculations. Nitrate loss was then determined by incorporating the 

nutrient removal process into the equation. Nitrate retention was determined by finding 

the difference between the nitrate concentrations on the flooding and ebbing tide, and 

factoring in discharge: 

NR  = Qt* (Ni – Nt) 

Where NR = nitrate retention in µmoles s-1 

Qt = discharge in L s-1 at time (t) 

 Ni = initial [NO3-N] of tidally introduced water 

 Nt = [NO3-N] of draining tidal channel water at time (t) 

The net nitrate retention was determined by integrating to calculate the area under the 

curve for the nitrate retention over time.  

1.3.6 Sites of nitrogen processing 

 To target the location of nitrate retention, further experiments were conducted to 

determine the impact of each site of processing. 

1.3.6a Net in-stream nitrate retention  

To examine in-stream net nitrate retention, an additional study site was used. The 

study site is a 5th order channel located directly off of the boat launch (Fig 1.4).  This 

study site was chosen to measure in-stream nitrate flux over a reach because the channel 

was manually altered, and consequently has no meander bends. To determine in-stream 

nitrate retention rates, sampling sites were chosen along the manually altered stream 
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segment directly off of the boat launch because that portion of the river no longer has 

meander bends and few tributaries.  Both a 50 and 100 meter reach were tested on an 

outgoing low tide to determine the influence of distance on nitrogen flux. As mentioned 

previously, the site is seasonally dominated by Elodea species, so this sampling site was 

only used when growth of the macrophytes was minimal. 

 

 

Figure 1.4. Map showing sample collection points for in-stream denitrification 
experiment over a 100 meter reach with no meanders. The 50 meter reach was from site 
B to 50 meters between the markers. 
 

1.3.6b Groundwater processing 

Seeping groundwater was collected from a draining 3rd order channel to determine 

the contribution of groundwater. A simplifying assumption was made that the water 

recharging the near-channel groundwater originated from nitrate-rich, tidally introduced 

main stem water. The difference in nitrate concentrations in relation to volume of 

groundwater flux determined the amount of groundwater processing. Piezometers weren’t 

installed to measure groundwater because Phemister (2006) extensively characterized 

groundwater processing.  
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To determine the rate of denitrification, water samples were collected and 

analyzed for excess nitrogen gas by quantifying the change in the ratio of N2:Ar using 

Membrane Inlet Mass Spectrometry (MIMS). Water samples (5 mL) were collected in 

the field in glass vials and preserved with HgCl2. Care was taken to fill the vials 

completely to minimize the formation of air bubbles. The vials were stored at the same 

temperature as collected, and submerged in water to prevent air entry or degassing. 

Although samples collected from the water column or seeping groundwater are 

considered to come from an open system, if ratios are high enough over ambient 

conditions, determination of denitrification is still possible.  

1.3.6c Marsh surface denitrification: Core incubation using Membrane Inlet 

Mass Spectrometry (MIMS) 

The dissolved gas concentrations (N2, O2, and Ar) were measured using the 

MIMS Dissolved Gas Analyzer (Kana et al., 1994). Water samples were pumped through 

a semi-permeable silicon membrane under high vacuum into the attached mass 

spectrometer to measure dissolved gas concentrations. Data were corrected for instrument 

drift and background, and sample temperature and salinity. Using the dissolved gas 

concentration ratios over time, sediment-water N2 and O2 fluxes were calculated using 

the following equation: 

F = S*h*k 

Where F = the net analyte flux in µmoles m-2 h-1,  

s = the slope of the best fit line from linear regressions of concentration  

change over time in µmoles L-1 h-1,  

h = is the height of the water column in cm for a given core  
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k = a constant of 10 derived from the equation conversion of 1 L to 1000 cm3
  

and 10,000 cm2 to 1m2 

Any samples with regression value of <0.90 were designated as not interpretable and 

single outliers were removed before analysis.  

Marsh cores were analyzed for nitrogen flux of the marsh surface and subsurface. 

Samples were taken along a transect at distances of <1, 20.5, and 33.4 m from the marsh 

creek using 30 cm long (6.5 cm inner diameter) PVC cores to a depth of approximately 

10-15 cm. Cores were transported on ice and stored in a temperature controlled room, 

which was maintained at the temperature of the river water collected that day. Once at the 

lab, the cores were placed under water that was collected from the river, and bubbled 

overnight to equilibrate. The cores were equilibrated in a dark, temperature-controlled 

chamber for approximately 18 hours to allow background N2 levels to decrease to 

approximately 1% by using overlying water and a headspace flushed with air. The cores 

were then sealed with polycarbonate lids outfitted with a magnetic stir bar and sampling 

ports with only water in the headspace. The cores were arranged around a central magnet, 

which turned the lid magnetic stir bars at ~ 40 rpm. Cores were incubated in this manner 

for a minimum of 4 hours (when water temperature was above 12oC), and a maximum of 

7 hours (when water temperature was <12oC). Initial samples (30 mL for nutrient 

analyses and duplicate 5 mL samples for N2 and O2 analyses) were drawn from the 

headspace of each core and then approximately every 1.5 hours thereafter for the duration 

of the incubation. The 5 mL gas samples were killed with HgCl2 and stored under water 

in the temperature controlled room. The nutrient samples were filtered using a 0.2 micron 

filter and frozen until analysis. Care was taken to draw only the necessary volume of 
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water for analyses. Water drawn for the samples was replaced with additional river water 

that was fed into the cores as water was sampled. Triplicate cores were run, as well as a 

control core without sediment.  

 Air bubbles formed under the lids of three of the cores during incubation. The 

time of appearance and size were noted. The source of the bubbles appeared to be from 

air pockets in the sediment or from anaerobic metabolism, and not from a leaking seal on 

the lid of the core. Cores with bubbles weren’t disregarded. The collected samples were 

then analyzed for dissolved gases within two weeks of the experiment using MIMS. The 

samples collected for nutrient analyses (NH4-N, NO2-N, and NO3-N) were immediately 

analyzed as outlined below.  

4. Implications 

This experimental design represents a novel approach to determining ecosystem 

functioning based on geomorphic parameters. The approach considers the constraints of 

geomorphology and hydrology of the tidal freshwater wetland system to characterize 

nitrate retention. Previously, practitioners and scientists have often overlooked or 

underestimated the importance of these two factors in ecosystem processing. When 

characterizing nitrate retention or denitrification on a large scale, a small scale 

experiment is conducted, and the results are scaled up to the ecosystem level without 

taking into account spatial variability. By linking together the geomorphology, 

hydrology, and biogeochemistry of the ecosystem, the net nitrate retention can be more 

accurately estimated.  
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CHAPTER 2 

1. Geomorphic and hydrologic organization of freshwater tidal marshes 

2.1.1 Morphologic characteristics of the tidal network 

The freshwater tidal marshes along the Patuxent River contain highly organized 

channel networks that serve to convey water into the marshes that border the river (Fig. 

2.1).  This study was conducted in the upstream boundary of the freshwater tidal 

wetlands. Incoming tides push water into tidal channels that border the channel, these 

channel systems considerably extend the tidal marshes into regions where levels along 

the channel would otherwise prevent overbank flooding of the channels during high tides.   

 

700 m

Levees

Interior channels

Exterior Channels

 

Figure 2.1. Tidal marshes showing levees along main channel, tidal network marsh 
(outlined), interior tidal channels, exterior tidal channels. Image from U.S. Geological 
Survey, April 2006.  
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Relationships among channel order, channel width, channel length, and marsh 

area were explored to characterize channel and marsh organization. These relationships 

for the study area (north of Jug Bay) have been previously examined by Smith-Hall 

(2002) and Phemister (2006). Smith-Hall (2002) noticed that the smaller order channels 

located within extensive channel networks (interior channels) have somewhat different 

characteristics than channels that come directly from the main channel (exterior 

channels). Therefore, the relationships developed for interior channels by Smith-Hall 

(2002) and Phemister (2006) were compiled and compared with those obtained for 

exterior channels, which are the focus of this study. Compiled data are found in the 

appendix along with additional data collected for this study (Appendices B and C). Both 

Smith-Hall (2002) and Phemister (2006) examined relationships between stream length 

and stream order, and tidal marsh area and stream length. Stream length is one of the 

easiest morphological variables to measure, since data can be obtained from aerial photos 

and other images. These relationships for the Upper Patuxent are shown in figures 2.2 

and 2.3. The reported error is +/- 1 standard deviation. 
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Figure 2.2. Relationship between stream length and stream order. For interior channels, 
stream length = 3.6729e 1.1461*channel order, no relationship was found for exterior channels. 
Blue points are for interior channels (n=40) and purple points are for exterior channels 
(n=18). Reported data from Smith-Hall (2002).  Note that the 3rd order stream lengths for 
exterior channels are shorter.   
 

These data indicate that for channels within a highly branched network (interior 

channels), stream length increases exponentially with channel order. This relationship is 

similar to that of terrestrial stream channels, although the stream lengths are much 

shorter. For exterior channels, there is not a systematic increase in stream length with 

stream order. This suggests that either these channels can not grow headward easily (due 

to low velocities and high resistance), or that the channels are truncated by processes 

occurring along the main channel. 

The inundated marsh area can also be related to stream order or stream length 

(Fig. 2.3).  If systematic relationships between marsh area and stream length can be 

determined, then stream length can be used to estimate marsh area for unmeasured parts 

of the system. The marsh basin area and stream length were closely correlated for both 

interior (r2 = 0.96) and exterior channels (r2 = 0.98). Again, there is large variability for 
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the reported measurements because smaller order channels are more variable than larger 

order channels.  
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Figure 2.3.  Relationship of channel length to channel area for average 1-3rd order interior 
(blue, n=40) and exterior (purple, n=18) streams (Smith-Hall, 2002). For interior streams, 
basin area = 0.5516*stream length 1.9844, and for exterior streams, basin area = 
0.0846*stream length2.3603.  
 

Channel size and shape also exhibit systematic organization within tidal marsh 

channel networks. The size of the channel mouth constrains the amount of water fluxes 

into the tidal network; therefore, the relationship of channel width and cross-sectional 

area to stream order were also examined (Fig. 2.4). The channel width and cross-sectional 

area increase exponentially with increased channel order. These morphologic 

relationships are crucial because they create a framework to estimate channel dimensions 

and water fluxes for unmeasured channels. Channel width can easily be obtained from 

aerial photos, and if other channel parameters can be estimated from channel width 

measurements, then perhaps channel area and water flux can also be estimated.  
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Figure 2.4.a-b. Relationship of channel order and channel mouth width (a), and channel 
order and cross-sectional area (b) for exterior channels. The channel width increases in an 
exponential manner as channel order increases incrementally.  
 

 To determine relationships between channel width and other channel 

morphological variables, channel cross sections were measured at the mouth exterior 

stream channels of order 1-5 (Appendix B; Fig. 2.5). These data were compared with 

A 

B
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other channel data measured on interior channels by Phemister (2006). Channel cross-

sectional area was calculated from these measurements. Average channel depth was 

determined by dividing total channel area by surface width. The relationship between 

channel width and cross-sectional area is more closely correlated for interior channels (r2 

= 0.98, p < 0.01) than exterior channels (r2 = 0.83, p = 0.03). The small p-values for the 

width relationships for exterior channels (width and channel order, p = 0.08; and cross-

sectional area and width, p = 0.03) indicate that width can be used to predict channel 

order and cross-sectional area, which can be used to estimate discharge. In general, 

smaller order channels exhibit more morphological variability than higher order channels. 

Although cross-sectional area increased logarithmically with increased channel order, the 

majority of channels measured were less than 17 meters wide. The cross-sectional area is 

an essential morphologic measurement because the values can be used to calculate 

discharge. 
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Figure 2.5.a-b. Morphologic relationship between channel width and channel mouth 
cross-sectional area for (a) exterior channels and (b) interior channels. The relationship 
was more closely correlated for interior channels, which are more homogenous. Data for 
interior channels are from Phemister (2006). 
 

Width to depth ratios were examined (Fig. 2.6; Appendix B), which characterize 

the channels as being relatively shallow and wide. This geomorphologic characteristic 

A

B
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can be used to aid in predicting sediment type and transport. The data set isn’t large 

enough to make any conclusions about width to depth ratios within the system because 

the low order channels are highly variable, especially for exterior channels. Also, the 

measurements were taken within one position of the network, and not along the length of 

the network system. As a comparison, relationships drawn by Myrick and Leopold (1963) 

from the neighboring Potomac River range from 4.4 to 32.4; however, that study didn’t 

encompass enough data to draw relationships either. Also, the smallest channel measured 

in that study was a 4th order.   
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Figure 2.6. Relationship between channel width and depth determined from field data. 
Using the width to depth ratio, channels of the Patuxent River tidal network were 
characterized as being relatively shallow and wide.  
 

Morphologic relationships for both the marsh (marsh area vs. stream length; 

stream length vs. stream order) and the tidal channels can be excellent tools for 

estimating marsh hydraulics or fluxes over large areas of tidal marsh, which would be 

difficult to measure for every portion of channel or marsh within a network. Aerial 

photos, other remotely sensed data, and high resolution Lidar topographic data can be 



33 

used to measure channel width and channel length. From these measurements, estimates 

of marsh surface area and channel characteristics can be made. Although field 

measurements provide the most accurate data, use of aerial photographs on Google Earth 

to measure channel widths for the study site resulted in an error of less than 2% 

(Lillibridge, 2009). 

2.1.2 Hydrologic characteristics of the tidal network: Discharge 

 The goal of this study was to determine the flux of water and nitrogen into and out 

of tidal channels, and to determine the amount of nitrogen retention within the marsh 

system; therefore, the ability to accurately measure and estimate discharge is essential.   

Water discharge is defined as volume divided by time. At any instant in time, 

discharge can be measured by knowing the channel cross sectional area and the average 

velocity of the channel:  

Q = A*v 

Where Q = discharge in m3 s-1 

A = channel cross-sectional area in m2 

v = mean velocity in m s-1 

For tidal channels, it is very difficult to measure either channel cross sectional 

area or velocity as the tide is changing with flooding or ebbing conditions. The channel 

cross sectional area can easily be measured at high tide, when the velocity goes to zero.  

Once the maximum channel cross sectional area is measured, the channel cross sectional 

area for the falling stage can be determined by monitoring gauge height and calculating 

the cross sectional area for that stage. Average channel velocity is usually obtained from 

measurements across the channel, which are used to determined discharge and average 
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velocity (Q/area).  For tidal channels, however, the stage and velocity change too rapidly 

for this to be effective. Therefore, velocity profiles across half of the channel, and at 

selected vertical profiles are collected to determine velocity structure, and the relationship 

between the average velocity and the maximum velocity in the cross section. Discharge 

was determined using instantaneous measurements of maximum velocity over the tidal 

cycle. The total volume of discharge was determined by integrating the area under the 

curve over half a tidal cycle (either flooding or ebbing tide).  Discharge was calculated 

every time water chemistry samples were collected. A graphical example is given in 

figure 2.7, but complete measurements are in Appendix D. 
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Figure 2.7.a-d. Measurements used to determined discharge for a 3rd order channel: (a) 
gauge height, (b) cross-sectional area, (c) average velocity, and (d) discharge. Data were 
collected 10/1/08. 
 

  The maximum discharge was calculated for each site using the parameters at the 

bankfull condition (Fig. 2.8). The maximum discharge was slightly greater for the spring 

measurements (collected on 5/29/09); however, the area experienced heavy rain in the 

week prior to measurement. The fall measurements were collected on 9/24/08 and 

10/1/08. Both the fall and spring discharge were closely correlated with channel order (r2 

= 0.99). Discharge increased exponentially with channel order, similar to the trend found 

for width and channel order; therefore, channel width controls the channel discharge. 

D 
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Figure 2.8. Comparison of maximum discharge and channel order for fall (blue) and 
spring (purple) sampling periods for exterior channels only (p=0.19 for both seasons). 
Fall sampling was conducted on 9/24/08 and 10/1/08, and spring sampling was conducted 
on 5/29/09. 
 
 An important note must be made that interior and exterior channel discharge was 

markedly different because of variations in velocity. An example of exterior channel 

discharge can be found in figure 2.7.d. The velocity of the channel water wasn’t 

conservative, and mimicked the mainstem velocities more so than interior channels. 

Exterior channels are also greatly affected by the wind. On one occasion, the wind on the 

Patuxent River was strong enough to force the smaller exterior channels to stay at near 

bankfull condition while the mainstem was draining.  

In making velocity measurements, an assumption was made that the maximum 

velocity was being measured; however, velocity profiles weren’t measured for each site. 

The maximum surface velocity for the smaller order channels was determined using 

markers on the surfaces to determine the area of fastest flow. The velocity was then 

measured at that point. The velocity was assumed to be accurate for smaller orders 

because the flow was contained in a small area. Since the exterior channels were mostly 
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devoid of vegetation on the channel bed, the roughness height was not a complicating 

factor. Future research will refine the discharge measurements and draw relationships 

such that discharge can be estimated based on tidal stage.  

An additional assumption was made that the discharge was completely contained 

within the channel on a flooding tide. The marsh surface experienced overbank flooding 

at times, but depended on the magnitude of the tidal stage. With this assumption, the 

uncertainty lies within the smaller order channels. Larger order channels fully contain the 

tidal flow, and less frequently experience marsh surface inundation compared to smaller 

order channels. Smaller orders were more susceptible to overbank flooding. Also, interior 

channels flood to a differing extent than exterior channels that are influenced by the 

levees. 

2. Hydraulic geometry characteristics of the tidal network 

The at-a-station hydraulic geometry was determined for each site (Appendix D).  

Examples of the hydraulic geometry relationships for tidal channels are shown in figure 

2.9. These relationships indicate that the increase in discharge with tidal stage is 

accommodated for this 3rd order channel primarily by an increase in width and velocity.  

For the higher order channel, width does not increase significantly with stage, but 

velocity increases significantly. The hydraulic geometry relationships for exterior 

channels are reported in table 2.I.   



39 

1st Order

d = 0.9437x0.5784

w = 0.1038x0.0538

u = 0.0102x0.3678

0.001

0.01

0.1

1

10

0.1 1 10 100
Discharge (L/s)

w
(m

); 
d(

m
); 

u(
m

/s
)

 
3rd Order 

w = 0.5546x0.4354

d = 0.0965x0.2429

u = 0.0187x0.3219

0.01

0.1

1

10

0.1 1 10 100 1000

Discharge (L/s)

w
 (m

);
 d

 (m
);

 u
 (m

/s
)

 
5th Order

w = 6.6777x0.2295

d = 0.0386x0.3976

u = 0.0039x0.3729

0.01

0.1

1

10

100

1000 10000

Discharge (L/s)

w
(m

); 
d(

m
); 

u(
m

/s
)

 
Figure 2.9.a-c:  Hydraulic geometry relationships determined for a 1st order (a), 3rd order 
(b), and 5th order (c) channel. Relationships determined from data collected on 9/24/08, 
10/1/08, and 7/7/09 respectively. 
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Table 2.I. At-a-station hydraulic geometry relationships 
 Width (m) 

b 

Depth (m) 

f 

Velocity (m/s) 

m 

1st order:9/24/08a 0.054 0.578 0.368 

3rd order: 10/1/08 0.435 0.243 0.322 

5th order: 7/7/09 0.229 0.378 0.373 

Myrick and Leopold 
(1963) 

0.04 0.18 0.78 

 
a-Reported relationships were determined using data from a flooding tide. All other 
relationships were determined using data from an ebbing tide. 
 

Tidal channel hydraulic geometry presented in table 2.I is based on data collected 

from July through the fall, when submerged aquatic vegetation (SAV) was at its peak. 

The freshwater tidal channels are covered with dense growths of Elodea sp., which 

greatly increases the flow resistance and decreases velocity of these channels. Therefore, 

based on the fall data set (Table 2.I), the 1st order channel experienced a relatively small 

change in channel width (b = 0.054) over the tidal cycle, and a large change in channel 

depth (f = 0.578). The external smaller order channels aren’t very wide, but they respond 

significantly in depth due to their proximity to the main channel. The 3rd order channel 

experienced the opposite because the change in channel width was large (b = 0.4354) 

compared to the change in channel depth (f = 0.2409). The velocity was less variable 

between the two sites, and m for the 1st order was 0.3678, and for the 3rd order was 

0.3219. The largest tidal channel measured shows a small exponent for width b = 0.229 

and a larger exponent for velocity. Due to the large increase in width with increasing 
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stream order, the larger order channels convey significantly larger flow into the system 

and flow depths are significantly large so that the flow goes over the SAV.   

A comparison of the above measurements with other studies is difficult because 

there are few other data on at-a-station hydraulic geometry for tidal channels.  Myrick 

and Leopold (1963) made pioneering measurements in the Chesapeake Bay system, on 

the freshwater tidal Potomac River, but little other data exists. They present the following 

average at-a-station hydraulic geometry: b = 0.04, f = 0.18, and m = 0.78. The high 

exponent for velocity in their study might relate to differences in SAV, higher order 

channel, and proximity to the Potomac River, a much larger and higher velocity river 

than the Patuxent River.  For comparison, terrestrial at-a-station hydraulic geometry 

average the following (Leopold and Maddock, 1953): b = 0.26, f = 0.40, and m = 0.34. 

The measurements of discharge and hydraulic geometry indicate that the 

relationship between velocity and gauge height (and thus discharge and gauge height) can 

vary significantly by season, likely from the growth of SAV in the channels. The 

hydraulic geometry relationships indicate that width and depth are important variables in 

the at-a-station hydraulic geometry for small order channels (that often completely drain 

during the tidal cycle), but that velocity is an important parameter for the higher order 

channels.  

3. Implications 

2.3.1 Implications for geomorphology 

The geomorphic relationships outlined above can be used to quantify hydrologic 

fluxes within the tidal network systems. The reported data were compiled using data from 

both interior and exterior channels. Although complete data sets weren’t reported for all 
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relationships for both types of channels, a clear trend was shown within and between the 

systems. Exterior marsh channel networks are less extensive than interior channels and 

usually do not extend to orders higher than 3.  Exterior channels drain completely on an 

ebbing tide whereas interior channels don’t completely drain. Interior channel velocity 

was much more conservative than exterior channel velocity, which more closely followed 

mainstem discharge. Finally, the interior channel beds were completely vegetated with 

SAV, which affects flow velocities, whereas exterior channels due to their drainage 

characteristics aren’t vegetated. This vegetation significantly affects roughness height and 

flow velocities for interior channels. Overall, quantifying the hydrologic fluxes within the 

individual channel orders led to many unanswered questions.  

The geomorphology and hydrology of a system are vital components of an 

ecosystem that are often overlooked when scientists are trying to determine large scale 

denitrification or nitrogen retention. This study worked toward quantifying the hydrology 

of the system, but in drawing the relationships, a difference between interior and exterior 

channels became evident. These differences will be explored in future work. 

2.3.2 Implications for water fluxes 

 The hydrology of the various channel orders is a fundamental component in 

describing ecosystem denitrification. The tidal channel network functions as a vehicle to 

transport water into the smaller order channels within the network. This nitrate-rich tidal 

water then interacts with the marsh surface and hyporheic zone where denitrification 

occurs. As shown by the discharge data, the amount of water fluxing into and out of the 

channel is controlled by the stream width and channel order. There is an exponential 

relationship between discharge and channel order, and between marsh surface area and 
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channel order; therefore, an exponential relationship can be expected for net nitrate 

retention and channel order. 

 

   



44 

CHAPTER 3 

1. Nitrogen flux and retention in tidal marsh networks  

In this chapter, data are presented on the retention of nitrogen in the tidal marshes 

as a function of stream order. These data were determined from direct measurements of 

hydrologic fluxes and nitrogen (nitrate, nitrite, and ammonium) concentrations in tidal 

channel water. The experimental design for determining nitrogen fluxes and net nitrate 

retention was previously outlined in chapter 1, but the approach was refined after 

hydraulic data were collected and analyzed. A significant amount of data is required to 

determine nitrogen flux and retention. These analyses are streamlined with a few 

simplifying assumptions, which are outlined and tested in the next section.    

3.1.1 Assumptions 

The first assumption is that the nitrogen in the water in the tidal channel network 

is introduced into the channels from the flooding tide.  This assumption was tested by 

sampling both the mainstem and channel waters over time on a flooding tide (Fig. 3.1). 

The nitrate concentrations from both sites were within the reported error, so that the 

samples were not significantly different. In addition, after the tide reversed, the first slug 

of water draining from the tidal channel was similar in nitrate concentration to that which 

was just introduced into the channel from the flooding mainstem water. There was 

variability within the mainstem samples. Samples were taken from the middle of the main 

channel and were meant to represent maximum concentrations, but field work can be 

unpredictable. Variability was probably caused by the drifting of the kayak into the 

stream of water leaving the 5th order channel.  Samples should be sampled upstream of 

the site, so as not to sample the draining channel water. Note that the maximum values 
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remained relatively constant for the mainstem over time; the few dips in concentration 

were similar to values measured near the mouth of the 5th order channel.    
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Figure 3.1. Nitrogen concentrations for the 5th order channel. The mainstem 
concentrations are drawn in light blue. Data were collected on 10/1/08. 
 

The next major assumption is that the nitrogen concentrations introduced from the 

mainstem into a tributary channel remain constant over time on a flooding tide. This 

assumption was tested by measuring the nitrogen concentrations at the mouth of a 1st 

order channel for 3 hours on a flooding tide (Fig. 3.2). Nitrogen concentrations remained 

fairly constant over the 3 hour period; there was a range of 6 µmol L-1 NO3-N.  Due to 

the validation of this assumption with field measurements, the experimental approach 

was modified to include only an hour of the flooding tide prior to the reversal of flow 

direction. The 3-4 nitrogen concentration measurements made during this hour of the 

flooding tide can be used to characterize the incoming nitrate concentration data. This 

significantly reduces the amount of time required for data collection and analysis.  

Nitrogen retention measurements can be made within this 1-hour of incoming tide 

concentration data plus the complete data for the outgoing tide.   
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Figure 3.2. Nitrogen concentrations over time for a 1st order channel on a flooding tide. 
These data support the assumption that mainstem nitrogen concentrations were 
conservative over time. 
 

The third assumption based on the data in figure 3.1 was made in reference to the 

fate of the nitrate-rich tidally introduced water. As seen in figure 3.1, the nitrate-rich 

water was processed within the tidal channel, and when the tide continued to fall, the 

nitrate-depleted water was returned to the channel causing the nitrate concentrations  to 

drop close to zero (<5 µM). This led to the third assumption that there was net nitrate 

retention within the tidal channel network, and that the majority of nitrate was processed 

within the tidal marsh system between the maximum stage of the flooding tide and 

ebbing tide. An independent experiment by Swarth and Peters (1993) documented that 

nitrate concentrations at Jug Bay were continually greater on flooding tides, and 

appreciably lower on ebbing tides pointing to the significance of the tidal marsh network 

for nitrate processing.  

A final assumption is that nitrate is the most abundant, soluble, and mobile form 

of nitrogen found within the tidal network; for that reason, nitrate is the only form that 
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shows significant variation over the tidal cycle. This is illustrated with nitrogen flux data 

from a 5th order channel (Fig. 3.3). Nitrate fluxes were of the greatest magnitude followed 

by nitrite and ammonium. The area created by the flux curve for each nitrogen species 

was considered the net nitrogen retention. Nitrate retention was by far the greatest, nitrite 

and ammonium were nominal in comparison; therefore, nitrate fluxes and loss were the 

focus of this study. 
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Figure 3.3. Nitrogen fluxes for the 5th order channel calculated based on nitrogen 
concentrations presented in Figure 3.1. Nitrogen was the most abundant and mobile form 
of nitrogen within the tidal network. 
 
 
 It is important to note that nitrite concentrations were consistently high 

throughout this study. This may likely be because of the wastewater discharge into the 

system. A wastewater plant with the enhanced nutrient removal technology discharges 

into the study area. The wastewater plant may not completely oxidize the ammonium, or 

may partially reduce the nitrate, which may attribute to the high levels of nitrite. 
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3.1.2 Framework for determination of net nitrate retention  

Using the simplifying assumptions discussed above, hydraulic measurements and 

nitrogen concentration measurements were made at each sampling site to provide the 

necessary data for calculation of net nitrate retention (Appendices D and E; Fig. 3.3-3.6). 

Measurements were made at the mouths of 2nd, 3rd, 4th and 5th order channels to determine 

net nitrate retention within each of these systems.  For each site, gauge height and 

velocity were measured in the field at the same time that water samples were collected 

(these samples were filtered in the field and then frozen until analysis). These 

measurements were used to calculate discharge (velocity*area), and nitrate fluxes 

(concentration* discharge) as outlined in Chapter 1.  These data were used to determine 

net nitrate retention as a function of stream order. 

.   
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Figure 3.4. Framework for calculation of net nitrate retention for a 2nd order channel: 
(a) gauge height over time (b) discharge over time (c) nitrogen concentrations 
sampled over the tidal cycle (d) nitrogen fluxes calculated by incorporating discharge. 
Data were collected 9/20/08. Negative discharge values denote direction of flow into 
the channel. Flux measurements were only reported for ebbing tide.
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Figure 3.5. Framework for calculation of net nitrate retention for a 3rd order channel: 
(a) gauge height over time (b) discharge over time (c) nitrogen concentrations 
sampled over the tidal cycle (d) nitrogen fluxes calculated by incorporating discharge. 
Data were collected 10/1/08.
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Figure 3.6. Framework for calculation of net nitrate retention for a 4th order channel: 
(a) gauge height over time (b) discharge over time (c) nitrogen concentrations 
sampled over the tidal cycle (d) nitrogen fluxes calculated by incorporating discharge. 
Data were collected 9/24/08.

0
0.1

0.2
0.3
0.4
0.5

0.6
0.7

9:
30

 A
M

10
:0

0 
A

M
10

:3
0 

A
M

11
:0

0 
A

M
11

:3
0 

A
M

12
:0

0 
P

M
12

:3
0 

P
M

1:
00

 P
M

1:
30

 P
M

2:
00

 P
M

2:
45

 P
M

3:
03

 P
M

3:
15

 P
M

3:
22

 P
M

3:
35

 P
M

3:
45

 P
M

3:
50

 P
M

3:
55

 P
M

4:
15

 P
M

4:
18

 P
M

4:
30

 P
M

4:
35

 P
M

4:
40

 P
M

4:
45

 P
M

4:
51

 P
M

Time

G
ag

ue
 H

ei
gh

t (
m

)

A

0
20

40
60

80
100

120
140

9:30 AM 10:00
AM

10:30
AM

11:00
AM

11:30
AM

12:00
PM

12:30
PM

1:00 PM 1:30 PM 2:00 PM

D
is

ch
ar

ge
 (L

/s
)

B

-1000
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

-20 0 20 40 60 80 100 120 140

Discharge (L/s)

Fl
ux

 (u
M

/s
)

NO3
NO2
NH4

D

0
10
20
30
40
50
60
70
80
90

9:30 A
M

10:0
0 AM

10:3
0 AM

11:0
0 AM

11:3
0 AM

12:0
0 PM

12:3
0 PM

1:00 P
M

1:30 P
M

2:00 P
M

2:45 P
M

3:10 P
M

3:25 P
M

3:45 P
M

4:00 P
M

4:18 P
M

4:40 P
M

4:55 P
M

Time

C
on

ce
nt

ra
tio

n 
(u

M
)

NH4
NO2
NO3

C

 



52 

Figure 3.7. Framework for calculation of net nitrate retention for a 5th order channel: 
(a) gauge height over time (b) discharge over time (c) nitrogen concentrations 
sampled over the tidal cycle (d) nitrogen fluxes calculated by incorporating discharge. 
Data were collected 10/1/08.
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2. Net nitrate retention 

3.2.1 Calculation of net nitrate retention 

Net nitrate retention was determined by incorporating the magnitude of discharge 

into the loss equation. The following equation was used to determine net nitrate retention 

(see Chapter 1 for detailed methods): 

Nitrate retention = Qt* (Ni – Nt) 

Where Qt = discharge in L s-1 at time (t) 

 Ni = initial [NO3-N] of tidally introduced water 

 Nt = [NO3-N] of draining tidal channel water at time (t) 

Net nitrate retention was then calculated by integrating the area under the curve of nitrate 

loss over time.  
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3.2.2 Net nitrate retention  

The maximum rate of nitrate retention and the net nitrate retention were 

determined for a 2nd, 3rd, and 5th order channel (Fig. 3.8-3.10; Table 3.I). The 4th order 

channel isn’t included in this portion of the study because the measurements were taken 

on an extraordinarily windy day. As previously mentioned on windy days, the channels 

are kept from properly draining (as seen by the hydrograph in Fig. 3.6), so that data 

weren’t representative of the channel. A 2nd order channel processed at a maximum rate 

of 814 µM s-1 of nitrate, 3rd order channel processed 2,160 µM s-1 of nitrate, and a 5th 

order channel processed 31,390 µM s-1 of nitrate.  

To determine the net nitrate retention, the time for processing was factored into 

the equation. As seen in the above framework, the nitrate concentrations dropped to zero 

before the completion of the tidal cycle. Since nitrate depletion occurred rapidly, the time 

periods for retention varied. The net nitrate retention for the 2nd order was 3.4 moles 

NO3-N over a 2.5 hour sampling period, as determined by integrating the area under the 

curve. The net nitrate retention for the 3rd order was 13.2 moles NO3-N, and the 5th order 

was 240.3 moles NO3-N, both values determined over a 5.5 hour sampling period. The 

greatest error within these data is probably due to the discharge calculations, which may 

contain up to a 10% error due to the measurement of discharge. Even with factoring in a 

10% error, net nitrate retention increases exponentially with stream order (Fig. 3.11) 
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Figure 3.8. Net nitrate retention for a 2nd order stream. The maximum rate of nitrate 
processing was 814 µmol s-1 for a total loss of 3.4 moles NO3-N over the 2.5 hour 
sampling period. Data collection was in the Fall on 9/20/2008. 
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Fig
ure 3.9. Net nitrate retention for a 3rd order stream. The maximum rate of nitrate 
processing was 2,160 µmol s-1 for a total loss of 13.2 moles NO3-N over the 5.5 hour 
sampling period. Data collection was in the Fall on 10/1/2008. 
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Figure 3.10. Nitrate loss for a 5th order stream. The maximum rate of nitrate processing 
was 31,390 µmol s-1 for a total nitrate loss of 240.3 moles in the 5.5 hour sampling 
period. Data collection was in the Fall on 10/1/2008.  
 
 

These results indicate that tidal channels deliver nitrate into the smaller order 

channels on a flooding tide and ultimately onto the marsh surface. The concentrations of 

nitrate in water draining out of the channels on the ebbing tide were close to zero. The 

greatest nitrate retention occurred in higher order channels that have the greatest marsh 

surface area. The 5th order channel processed an order of magnitude greater amount of 

nitrate than the 3rd order channel. The significance of processing changes depending on 

the type of comparison. When estimating processing per unit marsh surface area, the 3rd 

order had a greater amount of processing. This may be due to the fact that the marsh of 

the smaller 3rd order channels entirely drains on an ebbing tide, while higher order 

channels, such as a 5th order, aren’t completely flushed of stream water.  
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Figure 3.11.  Net nitrate retention as a function of stream order. Size of data point 
incorporates 10% error calculation.   
 

Since marsh surface area seems to be a controlling factor in net nitrate loss, 

additional relationships of net nitrate loss per unit area were explored (Table 3.I). When 

the marsh area was factored into the loss equation, the greatest loss was within the 2nd 

order channel, indicating the importance of surface area for processing. The smaller 

orders generally have a greater surface area for processing per volume discharge. When 

viewing the loss process in context of discharge, the 3rd order had the greatest amount of 

retention. Possibly, the 5th order doesn’t retain more nitrate because the velocities are 

much lower in the larger orders, so that a smaller volume of water is conveyed into the 

interior networks. The 2nd order didn’t have the greatest retention because the hydrologic 

fluxes were too small overall for comparison within the smallest orders.  

The scope of this study wasn’t large enough to measure residence times or the 

ultimate fate of nitrate on the flooding tide; however, the longer residence time of water 



57 

within the higher order channels may increase net nitrate retention over time. Residence 

times will be explored in future work.  

 

Table 3.I. Comparison of channel order and nitrate retention characteristics. 

Channel order Net 
nitrate 

retention 
(moles) 

Net nitrate 
retention per 

unit area  
(moles m-2)c 

Max rate of 
nitrate loss 
(µmol s-1) 

Max rate of 
nitrate loss as 
a function of  

discharge  
(µM) 

2 3.4 a 5.07 x 10-3 814 11.7 

3 13.2 b 2.26 x 10-3 2160 19.8 

5 240.3 b 5.43 x 10-4 31390 13.3 

a- Loss occurred over a period of 2.5 hours 

b- Loss occurred over a period of 5.5 hours 

c- Marsh area was determined using the geomorphic relationships outlined in Chap. 2 
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3. Implications 

Previous studies indicate that denitrification rates are not uniform in space or time 

(McClain et al., 2003).  In this study, nitrate retention within tidal marsh systems was 

determined by measuring the water flux and chemistry of nitrate-rich, tidally-introduced 

waters flooding into tidal channels and continuing the measurements into the ebbing tide.  

From these data, the spatial variability of net nitrate retention within the tidal marsh 

systems of varying size and stream order was determined. This study quantified nitrate 

processing in situ within tidal channel networks of varying size, but the specific sites of 

maximum nitrogen retention or loss pathways were not determined.  

3.3.1 Net nitrate retention  

In this study, nitrate retention was determined for exterior channel systems of 

varying stream order.  The 5th order channel had the greatest net nitrate retention when 

sampled as an exterior channel; however, the 5th order is composed of numerous smaller 

order interior channels that are integral to the nitrate retention. The individual interior 

channels weren’t sampled and compared with  the overall nitrogen  processing of the 5th 

order, but the results of this section lead to the idea that nitrate processing may vary with 

location in the marsh and by interior or exterior channel type. 

3.3.2 Tidal marsh systems act as nitrogen sinks 

The results of this section support the idea that tidal freshwater wetlands are sinks 

for nitrogen. There has been a long-standing controversy regarding the issue of wetlands 

being sources or sinks of nitrogen. Tidal freshwater wetlands are generally viewed as 

sinks for nitrogen (e.g. Vitousek et al., 1997); however, moving down the continuum into 

the saline environment reverses this phenomenon and oligohaline wetlands may be 
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sources of nitrogen (e.g. Heinle and Flemer, 1976). Although the mechanism of nitrate 

loss isn’t known, these results indicate that the tidal channel and marsh network are an 

integral component to the overall ecosystem denitrification, and must be considered when 

delineating boundaries for conceptual models of denitrification. 
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CHAPTER 4 

1. Sites of nitrate processing within the marsh 

In Chapter 3, nitrate retention in tidal network marshes of different sizes was 

examined. The size of a tidal marsh network can be portrayed as stream order, marsh 

area, or discharge. This analysis indicated that nitrogen retention increased exponentially 

as a function of tidal marsh stream order. Previous work indicates that freshwater tidal 

wetlands can serve as sinks for both sediment and nutrients introduced into wetlands by 

stream-flow (Seitzinger, 1988; Comin et al., 1997). In this chapter, potential sites of 

nitrate loss within the marsh system are examined.  

Nitrate processing can occur in the channels (Seitzinger, 1988), in the 

groundwater (Addy et al., 2002), and on the marsh surface (Jenkins and Kemp, 1984; 

Joye and Paerl, 1994; Dong, 2000; Eriksson et al., 2003; Greene, 2005b). Burial and 

recycling are two additional sinks for nitrogen, but they are evaluated by measuring 

marsh surface processing through the seasons, and by evaluation of annual or seasonal 

changes in nitrogen content of the biomass. In this portion of the study, nitrate processing 

that occurs on the temporal scale of a tidal cycle was measured by conducting 

experiments at different sites within the wetland: in-stream, marsh groundwater, and 

marsh surface. The approach is described in Chapter 1, but the methods are reviewed 

briefly in the next section.   

4.1.1 In-stream nitrogen processing 

 In-stream denitrification rates were determined from measurements of the 

nitrogen concentrations in parcels of water (n = 7 trials) that were tracked and sampled 

over reaches 50- and 100-meter in length. Channel cross sectional area was measured in a 
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straight, uniform reach at distances of 0 (beginning point), 50, and 100 meters.  The tidal 

channel at this location had an average width of x, and an average depth of y (Appendix 

B). The parcels of water sampled were identified by surface drogues (miniature 

marshmallows).  Nitrogen concentrations (ammonium, nitrite, and nitrate) were measured 

over a span of at least 3 hours beginning at high tide into a falling tide for both the 50- 

and 100-m reaches (Appendix F). No significant difference in nitrogen concentration 

between the two stations was identified (Fig. 4.1). These data suggest that in-stream 

nitrogen loss was not measurable at the time of measurement in July 2008, and therefore 

in-stream processing is a minor process in channels similar to the measured one. 
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Figure 4.1. a-d. Ammonium (a) and nitrate concentrations (b) for 7/7/08 over a 50-m 
reach, which indicate no statistical difference in nitrate and ammonium concentrations 
between the two stations. The lower diagrams indicate ammonium (c) and nitrate (d) 
concentrations for 7/18/08 over a 100-m reach on an ebbing tide. Again, there is no 
statistical difference in nitrate concentration between the two stations, but the decrease in 
nitrate concentrations resulting from up-marsh processes is evident. 
 

The same experiment was repeated on 10/15/08 (n = 8 trials). Similar results were 

found; no statistically significant changes in nitrogen species concentrations were 

observed in the samples (Fig. 4.2).  In the data collected in October, nitrate, nitrite, and 

C 

D 
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ammonium concentrations were almost double the concentrations of the summer. Nitrate 

concentrations in October ranged from 37.7 to 99.1 µM NO3-N, nitrite ranged from 13.5-

22.2 µM NO2-N, and ammonium ranged from 0 to 8.4 µM NH4-N. For the summer data, 

nitrate concentrations ranged from 9.1 to 46.0 µM NO3-N and ammonium ranged from 

1.1 to 5.4 µM NH4-N. The increased concentrations reflect the seasonal variations in 

water column nitrogen availability. 
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Figure 4.2 a-c. Nitrate (a), nitrite (b), and ammonium (c) concentrations measured on 
10/15/2008 over a 50- and 100-m reach. Samples were collected beginning at Site A 
(upstream), at Site B (50-m downstream), and at the dock/boat launch (100-m 
downstream) on an ebbing tide. 
 

The small tributaries feeding from the marsh into the measured reaches may have 

complicated the trend. This is inferred because of the spikes in ammonium concentrations 

that were sampled in both measurements. Within the system, there are no straight reaches 

of any distance without these small tributaries; I chose the straightest reach possible with 

the smallest number of tributary inputs to conduct these in-stream denitrification/nitrogen 

uptake experiments. These experiments should be repeated in early spring, when rapid 

growth of SAV might affect nitrogen concentrations.  

4.1.2 Groundwater nitrogen processing 

Seeping groundwater was collected on 11/18/08 at low tide (Table 4.I). Since the 

water was collected from an open system, the data were difficult to examine. The 

temperature of the water at the time of collection ranged from 4.5oC to 14.4oC. The 

samples were stored and run at 5oC. At 5oC, the ambient N2:Ar is 37.263, and when 

converted into N2 concentration over ambient argon levels is 725.69 µM. All ratios were 

C 
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above ambient levels of 37.263, and range from 37.919 to 38.612. Although the ratios 

were above ambient conditions, ambient N2:Ar varies slightly with temperature and 

salinity and the data were therefore corrected for these variations. When calculating the 

nitrogen gas concentrations, the data don’t support the same trend. Concentrations varied 

from 627.7039 to 745.6222 µM N2-N. It is therefore difficult to determine a trend in the 

data of an open system. Based on the uncorrected N2:Ar data, denitrification was 

occurring, but the magnitude of processing is unclear once the data are corrected for 

temperature. It is possible to infer that the measured water was already denitrified at time 

and location of collection because N2:Ar ratio wasn’t greatly higher than ambient 

conditions, and the MIMS technology allows accuracy of ± 0.02%.  

Another way to evaluate the possible role of groundwater denitrification is to 

measure the nitrate concentrations of the seeping groundwater. Groundwater seepage 

from the marsh into the channel is most significant during low tide when horizontal 

groundwater gradients adjacent to the channel are the steepest. Under these conditions, 

groundwater is the greatest contributor of baseflow on an ebb tide. During these low ebb 

tide conditions, tidal channel nitrate concentrations fell to zero at some of the sites, which 

indicates that the seeping groundwater was not bringing nitrate into the channel. It is 

probable that denitrification was occurring within the groundwater, since the water 

recharging groundwater originates from infiltration of nitrate-rich tidal water during the 

flooding intervals in the tidal cycle. Previous work shows that the total amount of 

groundwater entering the tidal channels is small (Phemister 2006), and therefore the 

extent of groundwater contributions to total flux in the tidal channel networks is small 

compared to the return flow from the tidal marshes or from tidal channel drainage.   
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Table 4.I. N2:Ar ratios for seeping groundwater collected on 11/18/08 used to determine 
whether denitrification was the dominant process. All ratios are above atmospheric levels 
of 37.263 at 5oC. 
 

Time N2:Ar N2-N (µM) 
11:15 AM 37.919 745.6222
11:45 AM 38.009 699.8356
12:45 PM 38.081 679.3477
1:00 PM 38.021 627.7039
1:15 PM 38.039 693.0992
1:45 PM 37.965 704.1689

 

4.1.3 Marsh surfaces nitrogen processing- Core incubations: Nutrient fluxes and 

ambient N2 and O2 fluxes 

 Marsh sediment cores (10-15 cm of surface sediment) were collected in Spring 

and Summer 2009 to determine marsh surface and subsurface (to a depth of ~15 cm) 

processing. Cores were equilibrated overnight, and then sealed and incubated with 

overlying water for approximately 6 hours. Water samples were collected over time to 

determine the amount of denitrification. 

Core incubation experiments provided rates of nitrogen gas and oxygen gas fluxes 

(measured with N2:Ar) from samples of the tidal marsh soils when incubated with water 

obtained from the adjacent channels on the incoming tide. These rates were examined for 

several different times of year (Spring and Summer), and at different locations from a 

tidal channel. Rates of N2 fluxes (Appendix G) ranged from 7.3 (in March) to 227.2 (in 

June) µmol N2-N m-2 hr-1 indicating a net flux into the water column from the tidal marsh 

(Fig. 4.3). The production of N2 over time was strongly correlated (r2 values ranged from 

0.95 to 0.99). The average N2 production for the March measurements was 56 µmol N2-N 

m-2 hr-1and in June the average was 154.6 µmol N2-N m-2 hr-1. Previously in Patuxent 
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River wetlands, Greene (2005b) measured an average N2 flux of 120 µmol N2-N m-2 hr-1, 

and a range of -156 to 846 µmol N2-N m-2 hr-1, with a range of 10 to 200 µmol N2-N m-2 

hr-1. 

The data on spatial production of nitrogen gas for the March data indicate that the 

greatest production of N2 was at the edge of the bank, at the site <1 meter from the marsh 

creek. This spatial pattern was not repeated for the June sampling period.  In June, 

maximum nitrogen gas production was obtained from samples of the upper marsh over 

30 meters from the marsh creek.   
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Figure 4.3. Production of N2 during core incubations for samples measured along a 35 
meter transect. Cores sampled on 3/19/08 and 6/9/09. 
 

The O2 fluxes ranged from – 1138 to – 1601 µmol O2 m-2 hr-1 indicating a net flux 

into the sediment (Fig 4.4). The reduction of O2 over time was strongly correlated for the 

sites sampled <1 and 33.4 meters from the channel (all r2 values >0.99), but were not as 

strongly correlated for the 20.5 meter sample (all r2 values were much less than 0.99, the 

largest value was 0.18) measured in March. No data were reported for the site 20.5 

meters from the channel, but there was still a trend of net flux into the sediment. 
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Comparison between sites isn’t possible because the sites were not statistically different. 

The average O2 loss into the sediment for the March measurements was -1210 µmol O2 

m-2 hr-1and June was -1358.6 µmol O2 m-2 hr-1. Previously in Patuxent River wetlands, 

Greene (2005b) measured a range of O2 fluxes from 470 to 5293 µmol O2 m-2 hr-1 with 

the flux directed into the sediment.  
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Figure 4.4. Flux of O2 measured during core incubations for samples along a 35 meter 
transect. Cores sampled 3/19/08 and 6/9/09. No data were reported for the core taken at 
20.5 meters on 3/19/08 because the trend in the data was not interpretable. 
 

There is a general correlation between O2 flux into the sediment, and N2 flux into 

the water column (r2 = 0.41; Greene, 2005b) for numerous marsh surface cores. The trend 

was not reported here because there were not enough data to determine a trend. 

Net fluxes of nitrate, NO3-N, were only reported for March samples because 

samples were incomplete for the June sampling. Fluxes ranged from 11 to – 123 µmol 

NO3-N m-2 hr-1 with fluxes largely directed into the sediment (Fig. 4.5). Only one value 

was positive and was measured in one of the replicate samples <1 meter from the marsh 

creek indicating flux into the water column. This result supports the notion that 
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nitrification and denitrification are coupled in the Bay sediments. The reduction of NO3 

over time was strongly correlated for the sites sampled (r2 values ranged from 0.88 to 

0.98). Error is large for all sites, so no comparisons can be drawn between sites. The 

average NO3-N for the March measurements was -105 µmol NO3-N m-2  hr-1. Previously 

in Patuxent River wetlands, Greene (2005b) measured a range of NO3–N fluxes from -

276 to 84 µmol NO3-N m-2 hr-1 with a range of -1 to -100 µmol NO3-N m-2 hr-1 most 

commonly observed.  

Specifically, Greene (2005b) measured a range of 8 to -155 µmol NO3-N m-2 hr-1 

in the mid marsh surface of Jug Bay in April. These rates are comparable to the rates 

measured in this study for the March samples (11 to – 123 µmol NO3-N m-2 hr-1). Since 

the study sites of both experiments are in close proximity to each other, and data are 

comparable, data from Greene (2005b) were used to estimate seasonal denitrification 

rates. 
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Figure 4.5. Flux of NO3-N measured during core incubations for samples along a 35 
meter transect. Cores sampled 3/19/08.  
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Net fluxes of nitrite, NO2-N, were again only reported for March. Fluxes ranged 

from -118 to – 228 µmol NO2-N m-2 hr-1 which indicates that fluxes were largely directed 

into the sediment (Fig. 4.6). The reduction of NO2 over time was strongly correlated for 

the sites sampled greater than 20 meters from the creek bank (r2 values > 0.93); however, 

of all samples analyzed, only two had strong regression values, so no error is reported for 

the sites. The average NO2-N for the March 2009 measurements was -173 µmol NO2-N 

m-2 hr-1.  
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Figure 4.6. Flux of NO2-N measured during core incubations for samples along a 35 
meter transect. Cores sampled 3/19/08.  
 

Net fluxes of ammonium, NH4-N, ranged from – 77.9 (in March) to 140 (in June) 

µmol NH4-N m-2 hr-1 (Fig. 4.7). For the March measurements, fluxes were largely 

directed into the sediment, but for the June measurements, fluxes were largely into the 

water column. The reduction of NH4 over time was strongly correlated for the sites 

sampled (r2 values ranged from 0.77 to 0.92). The regression value for the sample <1 
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meter from the creek bank was low (r2 = 0.77) for the March measurements; however, the 

value was still used for analysis because the flux was into the sediment, and the same 

order of magnitude of the other samples. No error was reported for the samples because 

not enough samples showed a strong correlation to calculate error. The average NH4-N 

flux for the March measurements was -66.6 µmol NH4-N m-2 hr-1and for the June 

measurements was 109.7 µmol NH4-N m-2 hr-1. Previously in Patuxent River wetlands, 

Greene (2005b) measured a range of NH4–N fluxes from -118 to 934 µmol NH4-N m-2 hr-

1 with a range of 0 to 200 µmol NH4-N m-2 hr-1 most commonly observed. 
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Figure 4.7. Flux of NH4-N measured during core incubations for samples along a 35 
meter transect. Cores sampled 3/19/08 and 6/9/09. 

 

2. Implications 

4.2.1 In-stream nitrogen processing 

Denitrification occurs when nitrate is present in low oxygen environments with 

available electron donors present. On a flooding tide through to an ebb tide, 

denitrification is expected. Two reaches (50- and 100-m) were tested to encompass reach 

length into the study, thus eliminating the possibility of sampling over too short of a 
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reach. A smaller reach means that the water has less time to interact with the surrounding 

banks and stream bed. Again, denitrification rates are greatest where water residence 

times are the longest (Kjellin et al., 2007). Longer reaches are not good tests for in-stream 

denitrification due to significant inputs from tributaries that might be significantly larger 

than the small ones noted in this reach. Previous studies suggest that in-stream 

denitrification is not significant in higher order streams because the nitrate isn’t coming 

into contact with heterotrophic denitrifiers in the suboxic zones (e.g. Findlay, 1995). Over 

a period of a few hours, denitrification is most likely to occur in aquatic sediments and 

soil microsites, and not within the water column (Seitzinger et al., 2006). Conversely, 

nitrification was another possible process occurring in the water column through the aid 

of vegetation oxidizing the sediments. If nitrification were occurring, an increase in 

nitrate concentrations would be measured, but this was not seen in the data either (Fig. 

4.1). It is possible; however, that nitrification and denitrification are coupled. In this case, 

denitrification may mask the effects of nitrification.  

Water column, or in-stream denitrification, is a more dominant process in 

stratified lakes and estuaries. In this system, the water column acts to transport, but not 

process nitrogen. In-stream denitrification may occur in the smaller stream orders that are 

significantly shallower and therefore, may provide more contact with marsh surfaces. 

Due to the rapid increase in channel depth and surface area with stream order (see 

Chapter 2), most of the channel bed surface area in a tidal marsh is contained in the 

higher order channels.  

4.2.2 Groundwater nitrogen processing 
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In tidal wetlands, groundwater is recharged by the nitrate-rich channel water 

during flooding tides, but drainage from the groundwater is limited to areas directly 

adjacent to the channels. Phemister (2006) determined that groundwater fluxes are larger 

along higher order channels, where the tidal range is higher and groundwater gradients 

are steeper. Total groundwater flux, however, is small compared with the water carried in 

the tidal channels (Phemister, 2006). There is evidence that denitrification occurs in the 

groundwater because the nitrate concentrations from the seeping groundwater were close 

to zero. Commonly, denitrification rates are high within the groundwater, but the gas 

samples in this study were collected in November when the water temperatures were as 

low as 3.6oC, and as high as 14.4 oC.  Denitrification greatly slows when temperatures 

near freezing (Holtan-Hartwig et al., 2002). There is evidence of groundwater 

denitrification, and we can infer that rates will be greater during the growing season. 

Denitrification is difficult to measure in an open system. Future testing using 

groundwater taken from piezometers will more accurately determine the magnitude of 

denitrification within the groundwater. 

Finally, the hydraulic conductivity of the sediment can restrict denitrification. 

Phemister (2006) evaluated hydraulic conductivity in the marsh system as a function of 

depth, and determined that the highest values of conductivity were restricted to a narrow 

zone between the marsh surface and the rooting depth of the vegetation (within the first 

0.75 m of the marsh). Compacted marsh vegetation in deeper samples had relatively low 

hydraulic conductivities (Phemister, 2006).    

4.2.3 Marsh surface nitrogen processing  
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Sediment core incubations were used to accurately quantify potential 

denitrification rates within a closed system. Greene (2005b) extensively measured 

denitrification rates in Jug Bay using MIMS, and determined that the average 

denitrification rate was 120 µmol N2 m-2 hr -1.  The majority of the data ranged from 10 to 

200 µmol N2 m-2 hr -1. The greatest variance in rates was among the seasons, and not 

location within the marsh. Merrill and Cornwell (2000) found similar denitrification rates 

of 28 µmol N2 m-2 hr -1 in the fall and 60 µmol N2 m-2 hr -1 in the spring. In this study, the 

denitrification rates fell within the ranges measured by both Greene (2005b) and Merrill 

and Cornwell (2000). Since freshwater tidal marshes have homogenous substrates, i.e. 

muddy soils relatively devoid of extensive root systems, (Garofalo, 1980), and the 

denitrification rates are similar, data from Greene (2005b) conducted at the adjacent Jug 

Bay marshes can be used to estimate seasonal variations in denitrification for this site. 

Seasonal variations in denitrification were documented through core incubations. 

The most apparent change was in denitrification rates with position in the marsh through 

the seasons. In the early spring, the highest denitrification rates were near the marsh 

creek, and the other rates were markedly lower 20 meters or more along the transect. 

These rates were mostly likely controlled by the organic matter available for organic 

matter mineralization. In the spring, the near creek marsh surface area likely has more 

labile forms of organic matter compared to the higher marsh areas that are inundated to a 

lesser degree. These organic matter reserves are utilized in the early spring, and are 

therefore less available in the early summer. The organic matter ultimately controls the 

levels of denitrification. More testing of organic matter content with position in the 
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marsh, and seasonal variations of core incubations are necessary to validate the above 

speculation.  

The marsh surface was the location for the greatest net nitrate retention. This was 

determined because marsh surface area increases with channel order, and in-stream and 

groundwater denitrification were minimal. Marsh surface processing doesn’t account for 

the entire loss process within the wetland system. The ultimate fate of all nitrates is still 

largely unknown. Plant assimilation, burial, recycling, etc. are all possible pathways of 

nitrate loss. A much more complex experimental design is necessary to detail all of these 

loss pathways. The mass balance approach within this study incorporated all of these 

processes by measuring the net nitrate retention even though the exact processes weren’t 

enumerated.    
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CHAPTER 5 

This study has documented the amount of nitrate retention in freshwater tidal 

network marshes of varying scale. Tidal channels within the marsh system bring nitrate-

rich water into the marshlands where nitrogen processing can take place. Nitrogen 

retention within the marsh system increases exponentially with stream order, and reflects 

the increase in tidal marsh area with stream order. When nitrogen retention is normalized 

for marsh area, it suggests that larger tidal network marshes may have nitrogen retention 

amounts that are an order of magnitude less than these of the smaller marsh areas. The 

disparity in processing suggests that there is either spatial variation in nitrogen processing 

within the larger tidal networks, or shorter inundation processing times in the marshes at 

the head of the systems. These spatial differences may include microsites created by 

changes in marsh surface topography, or density of vegetation and microbial mats. 

Within the larger systems, the spatial variability is magnified because of the large marsh 

surface area in comparison to smaller orders with smaller surface area with less 

opportunity for variability. Alternatively, the time of inundation may be the cause of the 

difference in processing rates. The smaller order exterior channels closely follow the tidal 

inundation patterns of the mainstem, but the larger orders follow by a much greater lag. 

Therefore after factoring water travel time, the larger channels with highly branched 

channels may be inundated for a smaller range of time compared to exterior smaller 

orders. Future research is needed to correctly identify the spatial heterogeneity, and 

duration of inundation between the orders.  

In addition, comparison of nitrogen retention determined from the mass balance 

considerations with those measured from core incubations in this and other studies, 
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suggests that measured nitrogen loss at the upper end of the tidal network is considerably 

higher than denitrification alone (Table 5.I). This suggests other processes are occurring 

in addition to denitrification, such as biotic assimilation or burial. Ultimately, the results 

suggest that the true value of freshwater tidal wetlands for nitrogen retention is largely 

under-estimated in many studies because ecosystem functioning is determined by 

denitrification rates alone. The results of this study support the notion that ecosystem 

nitrogen processing can’t be determined by scaling up of denitrification rates alone. Since 

there are still many unknown factors controlling ecosystem nitrogen processing, the well-

studied controls of denitrification are evaluated in the next section.   

 

Table 5.I. Comparison of calculated net nitrate retention rates and measured 
denitrification rates  
Channel order Net nitrate 

retention 
(moles)a 

Net nitrate 
retention per unit 

area  
(moles m-2)a 

Nitrate retention 
rate 

(µmol m-2 hr -1 ) b 

Denitrification 
rate 

(µmol m-2 hr -1)c 

2 3.4 (± 0.34) 5.07 x 10-3 500-1200 
(10-4 hrs) 

3 13.2 (±1.32) 2.26 x 10-3 226-565 
(10-4 hrs) 

5 240.3 

(±24.03) 

5.43 x 10-4 95-271 
(6-2 hrs) 

17 to 142  
(Fall range) 

  

a-From mass balance calculations (see chapter 3) measured in the Fall 2008. A 10% error 
is included for net nitrate retention. Even with the 10% errors, a difference in processing 
is seen between channel orders. 
 
b-Range of nitrate retention rates for each channel order per unit area and inundation 
time. The rates given are for a range of probably inundation times. The inundation times 
were calculated based on measured field velocities. 
 
c- Range of denitrification rates from Greene (2005b) measured on the marsh surface of 
Jug Bay in September and October 2004. 
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1. Controls on denitrification 

Denitrification rates are controlled by temperature, the availability of organic 

matter, amount of oxygen, and nitrogen availability (Seitzinger, 1988; Cornwell et al., 

1999). The greatest denitrification rates observed in the Patuxent River marshes occurred 

during the spring (Merill, 1999; Greene, 2005b). Denitrification activity is dependent on 

temperature. Potential denitrification rates at 4oC can be as much as 77% lower than rates 

at 22oC (Pfenning and McMahon, 1996). Although the work presented above was 

completed at different points throughout the seasons, the trends of denitrification are the 

same, only the magnitude of processing differs.  

The rates of denitrification are highest in spring not only because of temperature, 

but also because of organic matter content. In the spring, accumulated pools of organic 

matter are likely present from the previous year, and therefore are a source of carbon that 

is readily decomposed after the winter thaw (Bastviken et al., 2007). The quality, but also 

the availability of organic matter can control denitrification.  The greatest denitrification 

rates will occur in areas with the greatest availability of labile carbon. In freshwater tidal 

wetlands, organic matter content is fairly high compared to other wetland types. 

Measured organic matter concentrations ranged from 8.4 (+/- 0.03)% to 15.1 (+/-0.08)% 

with an overall average of 10.6 (+/-2.1)% for Patuxent River wetlands with no trend in 

composition in relation to distance from main tidal channel or depth (Phemister, 2006). 

Hopfensperger et al. (2009) also found that organic matter content and plant community 

composition are correlated with elevation, but denitrification enzyme activity didn’t 

differ across elevation. Oxidation of organic matter is an important pathway for 

denitrification, but the magnitude of oxidation didn’t change much with respect to 
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vegetation type or location within the marsh in their study; however, this isn’t a 

widespread trend.  

Regardless of the dominant type of vegetation, denitrification rates are correlated 

with sediment oxygen consumption (Setizinger 1990; Seitzinger 1994). As seen by the 

core incubations, denitrification rates increase as the oxygen consumption increases. In 

other words, the oxygen concentration decreases because the autotrophic microbes 

consume the oxygen in the sediment to complete the denitrification process. 

Denitrification rates also increase when the concentration of nitrate increases in the 

overlying water (Koerselman et al., 1989; Merrill and Zak, 1992; Seitzinger, 1994), but 

water column nitrate concentrations aren’t the best predictors of denitrification because 

nitrate is also produced through the coupled nitrification-denitrification process. In some 

cases, nitrate from the overlying water provides only ~20-50% of the nitrate needed to 

support denitrification, and the rest of the nitrate comes from the groundwater or 

nitrification of ammonium released during mineralization of organic nitrogen (Seitzinger, 

1994). 

Generally, in tidal freshwater wetlands of the Chesapeake, nitrification and 

denitrification are coupled within the sediment (Setizinger et al., 2006). Plants can 

introduce oxygen into the root zone which facilitates nitrification and produces nitrate. 

That nitrate then diffuses into the nearby anaerobic zone and the nitrate is transformed 

into N2 gas through denitrification. Nitrate also diffuses into the tributary sediments from 

the nitrate-rich tidally introduced waters. Nitrification occurs in the water column and at 

the oxidized sediment-water interface, and denitrification occurs in the anaerobic 

sediments (Reddy et al., 1989). As expected, the greatest nitrogen processing occurred on 
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the marsh surface, and the channel network influenced the magnitude of processing. As 

the marsh surface area increased exponentially, the magnitude of nitrogen processing also 

increased exponentially.  

Based on previous research, denitrification is an important loss pathway for 

nitrate (Bowden, 1986; Seitzinger, 1988; Joye and Paerl, 1994; Mitsch and Gosselink, 

2000). The experimental design of this study is such that overall nitrogen loss is 

measured, which is mainly via denitrification. It is important to remember that 

denitrification isn’t the only pathway for nitrogen removal from a system. Another major 

source of nitrogen loss within freshwater tidal wetlands is plant or biotic assimilation of 

nitrogen. This is an important factor for nitrogen loss along with burial, but ammonium is 

used more readily than nitrate, which leaves an excess of nitrate in the system. 

Assimilation is a seasonally dominant process. In the beginning of the growing 

season/early spring, assimilation is a much more dominant process, but once the 

vegetation is established, the process is no longer dominant (Boyd, 1969). Additionally, 

nitrate is produced by the nitrification of mineralized ammonium (Reddy et al., 1989), 

which again can attribute to the elevated nitrate concentrations. These ideas are supported 

by the above results; ammonium concentrations were much lower than nitrate 

concentrations (e.g. Fig. 3.3). Therefore, although greatly important to ammonium loss, 

assimilation has less of an effect on net nitrogen loss, but can be a controlling factor 

seasonally. Additional pathways such as dissimilatory nitrate reduction to ammonium and 

anaerobic ammonium oxidation (annamox) exist, but are more common in freshwater 

lakes or deeper aquatic systems (Burgin and Hamilton, 2007), and therefore play a small 

role in nitrogen removal in this study.  
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Although there are numerous controls on denitrification, freshwater tidal wetlands 

are conclusively excellent sites for denitrification. Although sites for nitrogen processing 

are spatially variable, the created framework to investigate the importance of the tidal 

channel network encompassed this variability by exploring the relationship between 

geomorphology and hydrology with biogeochemistry. 

2. Synthesis and future research 

Previous research has identified the importance of tidal wetlands for 

denitrification (e.g. Bowden, 1987; Seitzinger, 1988), but there has not been much 

attention paid to the geomorphic and hydrological organization of the tidal marshes and 

their effect on nitrogen processing and retention. Although this study points to the 

importance of the tidal network for nitrogen processing, the ultimate relief from 

eutrophication still lies in the reduction of nutrients coming into the Bay ecosystem. 

Long-term research is needed to explore the relationship among increased nutrient 

loading, sea-level rise, marsh growth, and the potential of tidal networks as long-term 

sinks for these nutrients. 

As is true for most research projects, there are many unanswered questions 

generated from this study. In particular, I think that the following research topics are 

worthy of future research attention: 

1. What is the difference in nitrogen processing between interior and 

exterior channel networks? 

a. What is the distribution of hydrological fluxes within interior tidal 

marsh networks?  What is the influence of elevation gradient, marsh 
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surface ponding depth and duration, and the timing of incoming and 

outgoing discharges within the tidal network system? 

b. What is the influence of vegetation roughness heights on flow 

velocities and nitrate fluxes?  Does it vary seasonally and is it different 

for interior and exterior channels? 

2. Do seasonal differences in vegetation and flow resistance affect 

inundation duration and nitrogen processing within the tidal network? 

3. How does position within the marsh (e.g. distance from the channel 

boundary or distance upstream from the main channel) affect nitrogen 

processing? 

Also, there is a need for continued research of this nature to determine the overall 

effect of sea level rise on the importance of the tidal network. As mentioned previously, 

the network may become even more important for processing since a greater volume of 

water will be flooding the marsh surface with an increase in sea level and tidal range. 

Tidal network marshes are effective sites for denitrification; therefore, the increased 

volume of nitrate-rich water might result in increased levels of denitrification. This 

scenario is only plausible if the wetlands are able to accrete quickly enough to keep up 

with sea level rise. A converse scenario is that the marshes will quickly become 

submerged, and the tidal network will become less important for processing once it is no 

longer intact. In subsiding freshwater wetlands of the Chesapeake Bay, the interior tidal 

networks appear to be the first areas affected by sea level rise, where channels appear to 

respond by widening and marsh loss results in the development of interior ponds (Kearny 

et al., 1988). Additionally, in the Chesapeake Bay system, eutrophication compounds the 
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effects of sea level rise because the excess nutrients can reduce carbon storage in the 

sediment resulting in marsh subsidence (Turner et al., 2009). The effect of sea level rise 

largely depends on sediment availability and transport, which calls for an additional 

study.   

This research project has helped to outline future research directions. The 

culmination of this work will hopefully facilitate scientists and practitioners to view and 

calculate ecosystem processing on differing scales to ultimately understand the 

importance of tidal freshwater wetlands with increased eutrophication and sea level rise. 
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Appendix A: Tides at Hill’s Bridge (Rt. 4) 

Table I. Tides at Hills Bridge (Rt. 4), Patuxent River, MD for 2008 sampling (provided 
by Maryland Department of Natural Resources Fisheries Service) 
Day High/Low Tide Time Height 

Feet 
Sunrise/ 
sunset 

Moon Time % 
Moon 
Visible

5/4/08 High 
Low 
High 
Low 

5:04 AM 
12:49 PM 
5:17 PM 
11:36 PM 

4.3 
0.7 
2.6 
0.2 

6:05 
AM 
8:02 PM 

Rise 
Set 

5:05 AM 
7:29 PM 

3 

6/25/08 Low 
High 
Low 
High 

5:23 AM 
10:41 AM 
5:58 PM 
11:46 PM 

1.5 
3.5 
0.9 
3.5 

5:43 
AM 
8:36 PM 

Set 
Rise 

12:11 AM 
12:25 PM 

66 

7/7/08 Low 
High 
Low 
High 

3:59 AM 
9:36 AM 
4:59 PM 
10:15 PM 

1.1 
3.9 
0.9 
3.5 

5:49 
AM 
8:34 PM 

Set 
Rise 

10:57 AM 
11:30 PM 

18 

7/17/08 High 
Low 
High 

5:51 AM 
1:39 PM 
5:59 PM 

4.1 
1.3 
2.6 

5:56 
AM 
8:30 PM 

Set 
Rise 

4:57 AM 
8:24 PM 

98 

7/18/08 Low 
High 
Low 
High 

12:03 AM 
6:26 AM 
2:10 PM 
6:43 PM 

1.1 
4.1 
1.3 
2.6 

5:57 
AM 
8:29 PM 

Set 
Rise 

5:59 AM 
8:58 PM 
 

99 

7/19/08 Low 
High 
Low 
High 

12:49 AM 
7:01 AM 
2:41 PM 
7:24 PM 

1.1 
4.1 
1.1 
2.8 

5:58 
AM 
8:29 PM 

Set 
Rise 

7:04 AM 
9:27 PM 

99 

9/20/08 Low 
High 
Low 
High 

5:30 AM 
9:31 AM 
3:57 PM 
10:32 PM 

1.5 
2.8 
0.7 
4.6 

6:53 
AM 
7:07 PM 

Set 
Rise 

1:02 PM 
10:16 PM 

75 

9/24/08 High 
Low 
High 
Low 

1:49 AM 
9:41 AM 
1:53 PM 
8:40 PM 

4.1 
1.5 
2.8 
0.9 

6:57 
AM 
7:00 PM 

Rise 
Set 

1:38 AM 
4:33 PM 

31 

10/1/08 Low 
High 
Low 
High 

2:35 AM 
7:12 AM 
1:50 PM 
8:01 PM 

1.3 
3.0 
0.7 
4.1 

7:03 
AM 
6:49 PM 

Rise 
Set 

9:27 AM 
7:39 PM 

2 

10/15/08 Low 
High 
Low 
High 

12:30 AM 
5:10 AM 
11:49 AM 
5:58 PM 

 Data Not Available  
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Table II. Tides at Hills Bridge (Rt. 4), Patuxent River, MD for 2009 sampling (provided 
by Maryland Department of Natural Resources Fisheries Service) 
 
Day High/Low Tide 

Time 
Height 
Feet 

Sunrise/ 
sunset 

Moon Time % 
Moon 
Visible 

3/19/09 High 
Low 
High 
Low 

12:10 AM
6:39 AM 
1:06 PM 
8:47 PM 

1.7 
0.2 
2.4 
0.9 

7:11 AM 
7:18 PM 

Rise  
Set 

3:14 
AM 
12:28 
PM 

48 

5/29/09 Low 
High 
Low 
High 

4:27 AM 
10:18 AM
5:59 PM 
10:58 PM 

0.9 
3.9 
0.9 
3.3 

5:45 AM 
8:24 PM 

Set 
Rise 

12:32 
AM 
11:17 
AM 

25 

6/9/09 Low 
High 
Low 
High 

12:53 AM
7:24 AM 
3:18 PM 
7:42 PM 

0.9 
4.1 
1.1 
2.4 

5:41 AM 
8:31 PM 
 

Set 
Rise 

6:58 
AM 
10:23 
PM 

98 
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Appendix B: Sampling site cross-
sections

Figures 1 a-c. Cross-sections of sampling 
sites for in-stream denitrification: a) cross-
section A within a 5th order channel b) cross-
section B located 50 meters away 
downstream of A c) cross-section near the 
dock (boat launch) located 100 meters 
downstream of A. The right bank is the 0 
point of the width measurement.
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Figure 2. a-c. Cross-section measured at the mouth of each 1st order site. The 
right bank is the 0 point of the width measurement. The referenced 1st order 
within the study is figure 2c.
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Figure 3. a-d. Cross-section measured at the mouth of each site for a 2nd, 3rd, 4th, 5th 
channel (a-d respectively). The right bank is the 0 point of the width measurement.  
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Table I. Characteristics of cross-sections for all sampling locations 

Channel Order Width (m) Depth (m) Width:Depth 
1 3.4 0.551 6.17 
1 2.15 0.508 4.23 
2 4.15 0.591 7.02 
2 4.7 0.33 14.2 
3 6.5 0.787 8.26 
4 16.35 0.508 32.2 
5 41.7 2.01 20.7 
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Appendix C: Geomorphologic relationships 
 
Table I. Geomorphologic data for interior and exterior channels from Smith-Hall (2002) 

Exterior Channels 
Order Length (m) Basin Area (m2) 

1 23.8 135 
2 38.2 461 
3 23.4 159 

Interior Channels 
Order Length (m) Basin Area (m2) 

1 13.05 63.0 
2 28.5 734.1 
3 129.2 7082 

 
Table II. Geomorphologic data for interior channels from Phemister (2006) 

Width (m) Cross-sectional Area (m2) 
8.6 3.4 
14.2 8.2 
8.2 3.3 
3.7 1.2 
12.1 6.7 
12.2 6.2 
12.8 7.7 
15.2 11.0 
6.1 2.1 

 
Table III. Geomorphologic data for exterior channels  

Order Width (m) Cross-sectional Area (m2) 
1 2.1 0.52 
1 3.4 0.82 
1 4.7 0.71 
2 4.1 1.2 
3 6.5 2.4 
4 6.5 6.4 
4 7.6 6.8 
4 16.3 4.8 
5 41.7 41.1 
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Appendix D: At-a-station hydraulic geometry 
 

Table I. Hydraulic geometry measured for in-stream denitrification experiment 
Date Sampled: 7/7/08 (50 m reach) 

Time Gauge height 
(m) 

Average 
velocity (m/s) 

Discharge 
(L/s) 

11:30 AM 0.92 0.12 832.8 
11:45 AM 0.90   
12:00 PM 0.82 0.19 1172.7 
12:15 PM 0.72   
12:30 PM 0.71 0.26 1392.2 
12:45 PM 0.68   
1:00 PM 0.65 0.30 1431.4 
1:15 PM 0.64   
1:30 PM 0.61 0.28 1234.3 
1:45 PM 0.57   
2:00 PM 0.56 0.28 1155.1 
2:15 PM 0.52   
2:30 PM 0.49 0.25 888.7 
2:45 PM 0.47 0.32 1085.7 

Date Sampled: 7/18/08 (100 m reach) 
Time Gauge height 

(m) 
Average 

velocity (m/s) 
Discharge 

(L/s) 
9:10 AM 0.57 0.23 1673.9 
9:30 AM 0.50   
9:45 AM 0.49 0.23 1508.5 
10:00 AM 0.47   
10:15 AM 0.44 0.23 1432.9 
10:30 AM 0.43   
10:45 AM 0.42 0.20 1187.4 
11:00 AM 0.39 0.20 1139.5 
11:15 AM 0.38 0.19 1079.5 
11:30 AM 0.35   
11:45 AM 0.34 0.17 910.5 
12:00 PM 0.33   
12:15 PM 0.30 0.16 823.2 
12:30 PM 0.27   
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Table I. Continued 
Date Sampled: 10/15/08 (50 and 100 m reach) 

Time Gauge height 
(m) 

Average 
velocity (m/s) 

Discharge 
(L/s) 

7:30 AM 0.69 0.10 740.1 
8:00 AM 0.66 0.20 1386.5 
8:30 AM 0.61 0.27 1745.9 
9:00 AM 0.53 0.30 1732.3 
9:30 AM 0.45 0.32 1639 
10:00 AM 0.37 0.30 1287.7 
10:30 AM 0.30 0.27 1019.4 
11:00 AM 0.20 0.26 745.4 
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Table II. Hydraulic geometry measured for denitrification per channel order: 1st order 
channel 
 

Date Sampled: 9/24/08 
Time Gauge height 

(m) 
Average 

velocity (m/s) 
Discharge 

(L/s) 
9:15 AM 0.15 0.005 0.18 
9:45 AM 0.20 0.005 0.18 
10:15 AM 0.28 0.02 0.74 
10:45 AM 0.34 0.04 3.3 
11:15 AM 0.41 0.03 7.1 
11:45 AM 0.44 0.03 9.3 
12:15 PM 0.48 0.03 11.1 
12:45 PM 0.51 0.02 10.1 
1:15 PM 0.52 0.005 2.8 
1:30 PM 0.53 0.007 4.8 
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Figure 1. Graphical representation of at-a-station hydraulic geometry for the 1st order 
channel. Data collected on 9/24/2008; data was collected during the rising limb of the 
hydrograph. Relationships are valid because b + f + m = 1. 
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Table III. Hydraulic geometry measured for denitrification per channel order: 3rd order 
channel 

Date Sampled: 10/1/08 
Time Gauge height 

(m) 
Average 

velocity (m/s) 
Discharge 

(L/s) 
8:30 AM 0.07 0 0 
9:00 AM 0.67 0.07 155 
9:30 AM 0.63 0.07 152 
10:00 AM 0.56 0.11 176.6 
10:30 AM 0.51 0.12 151 
11:00 AM 0.45 0.11 108.9 
11:30 AM 0.39 0.07 51.7 
12:00 PM 0.28 0.04 17.4 
12:30 PM 0.22 0.04 12.7 
1:00 PM 0.13 0.02 4.7 
1:30 PM 0.07 0.03 2.9 
2:00 PM 0.0 0.02 0.9 
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Figure 3. Graphical representation of at-a-station hydraulic geometry for the 3rd order 
channel. Data collected on 10/1/2008. Relationships are valid because b + f + m = 1.002. 
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Table IV. Hydraulic geometry measured for denitrification per channel order: 5th order 
channel 

Date Sampled: 10/1/08 
Time Gauge height 

(m) 
Average 

velocity (m/s) 
Discharge 

(L/s) 
8:45 AM 0.79 0 0 
9:15 AM 0.74 0.04 1521.2 
9:45 AM 0.70 0.06 2280.4 
10:15 AM 0.65 0.07 2582.8 
10:45 AM 0.57 0.07 2353.9 
11:15 AM 0.50 0.06 1939.4 
11:45 AM 0.43 0.05 1376.1 
12:15 PM 0.34 0.04 991.8 
12:45 PM 0.27 0.04 900.5 
1:15 PM 0.19 0.04 799.2 
1:45 PM 0.11 0.03 459.9 
2:15 PM 0.06 0.01 190.3 

Date Sampled: 7/7/09 
Time Gauge height 

(m) 
Average 

velocity (m/s) 
Discharge 

(L/s) 
9:23 AM 0.46 0.08 3398.6 
9:43 AM 0.41 0.07 2824.5 
10:21 AM 0.32 0.07 2392.5 
10:36 AM 0.28 0.07 2381.3 
10:50 AM 0.24 0.07 2222.3 
11:10 AM 0.20 0.07 2175.1 
11:28 AM 0.16 0.07 2000.8 
11: 46AM 0.12 0.06 1664.8 
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Figure 5. Graphical representation of at-a-station hydraulic geometry for the 5th order 
channel. Data collected on 5/29/2009. Relationships are valid because b + f + m = 1.
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Appendix E: In situ nitrogen concentrations per channel order 

 
Table I. Nitrogen concentrations for 1st order channel 

9/24/08 
Time NH4-N (µM) NO2-N (µM) NO3-N (µM) 

9:15 AM 0.8 16.7 45.4 
9:45 AM 2.1 15.4 67.8 
10:15 AM 0.0 16.0 59.7 
10:45 AM 0.2 17.1 58.5 
11:15 AM 0.1 13.8 62.5 
11:45 AM 0.0 12.6 61.4 
12:15 PM 0.05 14.4 58.7 
12:45 PM 0.3 14.6 62.5 
1:15 PM 0.1 12.8 56.5 
1:45 PM 0.0 14.7 39.0 
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Figure 1. Graphical representation of nitrogen concentrations over time for a 1st order 
channel. Data collected on 9/24/08 on a flooding tide.  
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Table II. Nitrogen concentrations for a 3rd order 
10/1/08 

Time NH4-N (µM) NO2-N (µM) NO3-N (µM) 
8:30 AM 2.3 14.6 26.6 
9:00 AM 2.5 14.1 26.7 
9:30 AM 1.1 15.1 29.0 
10:00 AM 0.5 14.7 24.3 
10:30 AM 0.2 15.8 18.3 
11:00 AM 0.2 15.1 9.2 
11:30 AM 0.3 16.6 4.7 
12:00 PM 0.6 16.8 1.3 
12:30 PM 0.8 15.9 0.0 
1:00 PM 1.4 17.4 0.5 
1:30 PM 2.1 17.7 0.0 
2:00 PM 3.3 18.3 0.0 
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Figure 3. Graphical representation of nitrogen concentrations over time for a 3rd order 
channel, using data collected on 10/1/2008. 
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Table III. Nitrogen concentrations for a 5th order channel 
10/1/08 

Time NH4-N (µM) NO2-N (µM) NO3-N (µM) 
8:45 AM 3.6 14.3 30.3 
9:15 AM 3.1 12.9 33.3 
9:45 AM 3.3 13.5 33.4 
10:15 AM 2.0 15.5 22.3 
10:45 AM 5.8 11.7 20.1 
11:15 AM 1.9 14.8 27.7 
11:45 AM 2.5 13.4 28.3 
12:15 PM 1.0 14.4 21.7 
12:45 PM 4.7 15.7 20.1 
1:15 PM 0.7 14.8 8.2 
1:45 PM 1.0 14.8 14.7 
2:15 PM 0.9 15.7 4.8 
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Figure 5. Graphical representation of nitrogen concentrations for a 5th order channel, 
using data collected on 10/1/2008. 
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Appendix F: In-Stream nitrogen concentrations 
 

Table Ia. In-stream denitrification 7/7/08 (50 m reach) 
Site A  

Time NH4-N (µM) NO2-N (µM) NO3-N (µM) 
11:45 AM 3.2 ND 41.8 
12:15 PM 2.6 ND 25.4 
12:45 PM 1.8 ND 25.5 
1:15 PM 1.9 ND 26.5 
1:45 PM 1.8 ND 30.2 
2:15 PM 2.1 ND 19.7 
2:45 PM 4.5 ND 13.2 

Site B  
11:45 AM 2.7 ND 42.8 
12:15 PM 1.9 ND 42.1 
12:45 PM 1.2 ND 9.1 
1:15 PM 0.6 ND 30.9 
1:45 PM 1.3 ND 23.7 
2:15 PM 1.4 ND 22.4 
2:45 PM 1.5 ND 45 

 
Table Ib. In-stream denitrification 7/18/08 (100 m reach) 

Site A  
Time NH4-N (µM) NO2-N (µM) NO3-N (µM) 

9:30 AM 2.1 ND 38.5 
10:00 AM 2.5 ND 32.2 
10:30 AM 1.4 ND 28.2 
11:00 AM 1.1 ND 18.7 
11:30 AM 1.3 ND 24.9 
12:00 PM 0.8 ND 45.3 
12:30 PM 1.2 ND 16.5 

Dock Site 
9:30 AM 0.9 ND 35.2 
10:00 AM 0.7 ND 30.0 
10:30 AM 1.2 ND 31.8 
11:00 AM 0.9 ND 25.4 
11:30 AM 0.8 ND 20.8 
12:00 PM 0.2 ND 17.9 
12:30 PM 0.7 ND 13.9 
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Table Ic. In-stream denitrification 10/18/08 (50- and 100 m reach) 
Site A  

Time NH4-N (µM) NO2-N (µM) NO3-N (µM) 
7:30 AM 2.8 20.0 99.1 
8:00 AM 0.7 21.3 59.4 
8:30 AM 0.9 15.7 77.9 
9:00 AM 0.1 14.4 88.6 
9:30 AM 0.9 16.9 82.0 
10:00 AM 0.9 16.7 81.3 
10:30 AM 0.05 16.0 88.6 
11:00 AM 0.5 16.0 68.3 

Site B (50 m) 
7:30 AM 0.8 16.8 71.9 
8:00 AM 0.7 22.2 37.7 
8:30 AM 0.1 15.9 88.8 
9:00 AM 8.4 17.9 86.7 
9:30 AM 0.0 15.3 71.4 
10:00 AM 0.0 17.2 82.1 
10:30 AM 0.1 21.3 52.7 
11:00 AM 0.8 16.9 65.7 

Dock (100 m) 
7:30 AM 0.7 20.0 58.0 
8:00 AM 0.7 13.7 94.1 
8:30 AM 1.1 15.4 94.2 
9:00 AM 0.0 17.1 98.1 
9:30 AM 0.0 16.7 88.1 
10:00 AM 6.5 14.7 81.7 
10:30 AM 0.4 17.1 67.3 
11:00 AM 0.2 13.5 57.2 
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Appendix G: Core incubations: nutrient fluxes and dissolved gas 
concentrations 

 
Table I. Nutrient fluxes measured on 3/24/09 along a transect of a 5th order channel. “NI” 
indicates non-interpretable fluxes. All reported values are in µmol m-2 h-1. 

Site NH4  NO2 NO3 O2 N2 
Low marsh 

(<1 m) 
-78 NI -97.4 -1463 157 

Mid marsh 
(~20 m) 

-59.9 -75.2 -21.6 NI 7.3 

High marsh 
(~30 m) 

-62 -154.6 -185.7 -1409.6 27.7 

Blank -43.4 126.6 478.1 -308 69 
 

Table II. Nutrient fluxes measured on 6/9/09 along a transect of a 5th order channel. “NI” 
indicates non-interpretable fluxes. All reported values are in µmol m-2 h-1. 

Site NH4  NO2 NO3 O2 N2 
Low marsh 

(<1 m) 
109.3 Data Data -1337.6 114 

Mid marsh 
(~20 m) 

79.6 Not Not -1336.7 122.5 

High marsh 
(~30 m) 

140 Available Available -1601.6 227.5 

Blank -32.4     
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