Attachment J-2: Cost Documentation "Factsheets" and Summary Table of Costs

nmary of Representative Sediment Managemen															
	Innovative Reuse Alternative 1	Alterna	tive 2A		r Placement ative 2B	Alterna	ive 2C	Alternati	ve 3 A	Alternat		Placement Alterna	tive 3C	Alternati	ve 3D
sical Description	Anternative 1	mema	uve 2/1	7 Incina	tuve 2D	mema	170 20	Internati	ve 5/1	Thema	IVC JD	Therma	luve 50	Internati	VC JD
Sediment to be removed, cubic yards	1,000,000	1,000	,000	1,000	0,000	1,000	,000	1,000,0	000	1,000	,000	1,000	0,000	1,000,0	000
Sediment to be removed, tons	810,000	810,	000	810,	,000	810,	000	810,00	00	810,0	000	810,	,000	810,0	00
Type of dredging	Hydraulic	Hydr		Hydr		Hydr		Hydrau		Mecha	nical	Hydr		Hydrau	
Transportation method	Pipeline	Pipeline		Pipe		Pipe		Pipelin		Barge + transf	·····	Pipeline + dil		Pipeline + disc	
Distance to be transported, miles	10	8+.		3	3	3		13		0+0-	-14	3+0	+12	14 +	
Location/type of containment site	Bainbridge, slurry screened, water returned, solids stockpiled	Drying/trans Susquehanna S dike cons	tate Park, with	N,	/A	N/	А	Will need dike co quarry for dewater project	ring to extend	Shoreline tr	ansfer site	Nearby drying si dike cons		Will need dike co quarry for dewate project	ring to ex
Final destination of material	Concrete block market	Pooles		Susquehar approximately Conowir	1 mile d/s of	Susquehan approximately Conowin	1 mile d/s of	Stancills Q		Mason-Dixon Qu site		Mason-Dixon Q sit		Mason-Dixon Qu: site)	arry (Belv
Number of dredging cycles that facility could be used before capacity is reached	Facility has a useful life of more than 40 years	Unknown, due to trans			nitation	No lim		5		29	1	2	3	23	
Land to be purchased, acres	100	42		1.	-2	1-	2	2-5		15		42	20	2-5	
duction Calculations														l	
Volume to be removed, cubic vards	1,000,000	1.000	.000	1.000	0.000	1.000	.000	1.000.0	000	1,000.	000	1.000	0.000	1.000.0	000
Volume in pipeline, cubic yards	4,000,000	4,000	,000	4,000	0,000	4,000	,000	4,000,0	000	N/		4,000),000	4,000,0	000
Volume to be disposed of, cubic yards	N/A	1,500		N/		N/		1,500,0		1,200		1,500		1,500,0	
Number of dredges	1	1			3	2		1		8		1	[1	
Number of pipelines	1	1				2		1		0		1	ļ	1	
Number of barge loads per day	N/A	2		N/		N/		N/A		10		N/		N/A	
Number of truck loads per day	N/A	N/		N/		N/		N/A		40		50		N/A	
Dike volume, cubic yards Booster pumps required	N/A 3	140,	,	N/		N/ 4		140,00		N/	Δ	140,		140,00	
Booster pumps required Months of operation	3 Year-round	/ Year-r	buio	October-Febru		4 July-March		12 Year-ro		0 Year-r	ound	Year-1		14 Year-ro	
Actual operational time, days per year	330	25		8		July-March 12		250		25		25		250	
Total sediment removal capacity, cubic yards per day	4,000	4,0			000	8,0		4,000		4,00		4,0		4,00	
e-Time Investment Costs	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hig
Real estate/land purchase	\$0	\$4,200,000	\$8,400,000		0	\$10,000	\$40,000	\$20,000	\$100,000	\$150,000	\$300,000	\$4,200,000	\$8,400,000	\$20,000	\$1
Legal and financial services	\$27,600,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
Design and study costs	\$13,300,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,0
Booster pump construction	\$2,300,000	\$2,100,000	\$2,100,000			\$1,200,000	\$1,200,000	\$3,600,000	\$3,600,000	\$ 0	\$0	\$600,000	\$600,000	\$4,200,000	\$4,2
Permanent pipeline construction	\$1,800,000	\$1,300,000	\$2,100,000		- / /	\$1,000,000	\$1,600,000	\$2,100,000	\$3,400,000	\$0	\$0	\$500,000	\$800,000	\$2,900,000	\$4,7
Transfer site/dike construction	\$0	\$1,100,000	\$2,200,000		\$ 0	\$0	\$0	\$1,100,000	\$2,200,000	\$0	\$0	\$1,100,000	\$2,200,000	\$1,100,000	\$2,2
Dredging and dewatering plant	\$28,600,000	\$0 \$0	\$0 \$0	\$0	\$0 ©0	\$0	\$0	\$0 ©0	\$0	\$0 ©	\$0 \$0) \$0) \$0	\$0 \$0	\$0 ©0	
Reuse manufacturing plant Subtotal	\$108,200,000 \$181,800,000	\$0 \$10,700,000	\$19,800,000	\$0	\$9,140,000	\$4,210,000	\$0 \$7,840,000	\$8,820,000	\$14,300,000	\$2,150,000	\$5,300,000	\$0 \$8,400,000	\$0 \$17,000,000	\$10,220,000	\$16,2
Subiotal	Costs to be offset by generated	<i>a</i> 10,700,000	\$19,000,000	φ3,210,000	\$9,140,000	<i>\$</i> 4 ,210,000	\$7,040,000	\$0,020,000	\$14,300,000	\$2,130,000	\$5,500,000	¥0,400,000	\$17,000,000	\$10,220,000	ş10,2
Annualized, \$/year	revenues	\$456,000	\$844,000	\$222,000	\$390,000	\$179,000	\$334,000	\$376,000	\$610,000	\$92,000	\$226,000	\$358,000	\$725,000	\$436,000	\$6
M/Removal Costs	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hig
Tipping fee (costs reduced by any generated revenues)	\$39,000,000 \$50,000,000	\$0	\$0) \$0	\$0	\$0	\$0	\$1,500,000	\$7,500,000	\$12,000,000	\$18,000,000	\$15,000,000	\$22,500,000	\$15,000,000	\$22,5
Dredging + transportation	\$0 \$0	\$15,000,000	\$20,000,000	\$10,000,000	\$15,000,000	\$5,000,000	\$10,000,000	\$20,000,000	\$25,000,000	\$40,000,000	\$70,000,000	\$20,000,000	\$30,000,000	\$20,000,000	\$25,0
Manufacturing processing	\$0 \$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	. ,
Construction design and management	\$0 \$0	\$1,000,000	\$2,000,000		\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,0
Subtotal	\$39,000,000 \$50,000,000	\$16,000,000	\$22,000,000	\$11,000,000	\$17,000,000	\$6,000,000	\$12,000,000	\$22,500,000	\$34,500,000	\$53,000,000	\$90,000,000	\$36,000,000	\$54,500,000	\$36,000,000	\$49,5
t per Cubic Yard	I									1					
umes yearly removal)	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hig
One-time investment cost, \$/cy	\$182	\$11	\$20	\$5	\$9	\$4	\$8	\$9	\$14	\$2	\$5	\$8	\$17	\$10	
Annualized investment cost, \$/cy/year	\$0 \$0	\$0	\$1	1		\$0	\$ 0	\$0	\$1	\$0	\$0	\$0	\$1	\$0	
Annual removal cost, \$/cy/year	<u>\$39</u> <u>\$50</u>	<u>\$16</u>	<u>\$22</u>			<u>\$6</u>	<u>\$12</u>	<u>\$23</u>	<u>\$35</u>	<u>\$53</u>	<u>\$90</u>	\$36	<u>\$55</u>	<u>\$36</u>	
Total annual cost, \$/cy/year	\$ 39 \$ 50	\$16	\$23	\$11	\$17	\$6	\$12	\$23	\$35	\$53	\$90	\$36	\$55	\$36	
or Limitations	Substantial commitment to	Currently not allo		Environmental in	mpacts; NMFS I	Environmental ir	npacts; NMFS			Large parcels adja	cent to the	Large parcels exp	pected to be	Effluent from dew	atering
	continual use would be required	large parcels adja		concerns		concerns	-			reservoir may be	difficult to find	difficult to find n	nearby	need to be pumpe	
		river may be very	difficult to											Susquehanna Rive	r
		find												l	
General Assumptions:	These are concept-level costs f	or planning pur	poses only. De	etailed design an	nd cost estimate v	vould be requir	ed for any futu	e studies investig	ration implem	entation of any o	of these alterna	atives.			
*	All alternatives assume the dre			0		-	•		· ·	•			developed for	the other lower Si	isqueh
	reservoirs.			-	-	-	_		-		-		-		-
Technical Assumptions:	Real estate cost = farmland cost i	n Harford/Cecil (County, MD: rat	nge of $cost =$		\$10,000	to	\$20,000 pc	er acre: based c	n Internet search	of agricultural l	and June 2013; as	sume large tracts	of land available.	
<u></u>	Annualization factor =		for interest =		and	project life of				for annualization		3			
	Each hydraulic dredge has its own					1 /		*	0			\$300,000			
	Hydraulic dredging process will a	dd a signficant an	nount of volume	e to the pipeline; a	issume pipeline wi	ll contain		4 ti	mes the dredgi	ng volume.					
	Drying process will be able to ren	nove a signficant :	amount of the w	vater that is pump	ed in with the dre	dged material; as		al to be transported	d after drying is	3		1.5	times the origina	al dredging volume.	
	Production capacity for one mech	nanical dredge = 5	500 cubic yards p	per day; material v		l by 20%, a facto	or of		1.2	(compared to orig		olume), during dre	dging process	0.0	
	Barge capacity varies; for transport						cubic yards; for i	n-reservoir dredgin	ng, the capacity	would be much s	naller, only		500	cubic yards/barge.	
	Permanent pipeline cost =	\$160,000	to		per mile (\$30-50	1 /									
	Transfer site/dike construction co	ost = 5-foot high	dike for 3 feet o	of material, assume	e 2 cycles per year,	\$8-16/cy constr	ruction cost								
	Tipping fee for Stancils Quarry is and to the trucked amount for tru	assumed to be \$1	1-5/cy with a tot				Dixon Quarry is	based on \$10-15/0	cy and a total v	olume available of	35Mcy; the tip	ping fees are appl	ied to the dredge	d amount for pipel	ine del

	Innovative Reuse		Open Water P	Placement						Upland I	Placement			
	Alternative 1	Alternative 2A	Alternativ		Alterna	ive 2C	Alternati	ve 3A	Alterna	A	Alternati	ve 3C	Alternat	tive 3D
ysical Description	2 000 000	2 000 000	0.000.0			000					0.000	000		
Sediment to be removed, cubic yards Sediment to be removed, tons	3,000,000 2,430,000	3,000,000 2,430,000	3,000,0 2,430,0		3,000 2,430		3,000,		3,000		3,000,0 2,430,0		3,000 2,430	
Type of dredging	Hydraulic	Hydraulic	2,430,0 Hydrau		2,430 Hydr		Z,430, Hydra		Z,430 Mech		2,430,0 Hydrai		2,450 Hydr	. <u></u>
Transportation method	Pipeline	Pipeline + barge	Pipelir		Pipe		Pipeli			fer + trucking	Pipeline + dike		Pipeline + di	
Distance to be transported, miles	10	8+32	3		3		13		0+0		3+0+		14 -	
	D.1.1.1.1.1	Drying/transfer site near					Will need dike co	onstruction at			NT 1 1 1 1	. 1 .1	Will need dike o	construct
Location/type of containment site	Bainbridge, slurry screened, water returned, solids stockpiled	Susquehanna State Park, with dike construction	N/A	L .	N/	А	quarry for dewate project		Shoreline t	ransfer site	Nearby drying site dike const	1	quarry for dewat projec	0
Final destination of material	Concrete block market	Pooles Island	Susquehanna approximately 1 Conowingo	mile d/s of	Susquehan approximately Conowin	1 mile d/s of	Stancills (Quarry	Mason-Dix	xon Quarry	Mason-Dixo	n Quarry	Mason-Dixon Q site	
Number of dredging cycles that facility could be used	Facility has a useful life of more	Unknown, due to local sediment	No limita	ation	No lim	tation	2		1	0	8		8	······
before capacity is reached	than 40 years	transport	INO limita	ation					1	0	-		0	
Land to be purchased, acres	100	1,250	1-2		1-	2	2-5		4	4	1,25	0	2-	5
oduction Calculations														
Volume to be removed, cubic yards	3,000,000	3,000,000	3,000,0	000	3,000	,000	3,000,	000	3,000	0,000	3,000,0	900	3,000	,000
Volume in pipeline (4X), cubic yards	12,000,000	12,000,000	12,000,0	000	12,000),000	12,000	,000	N/	/A	12,000,	,000	12,000	Ĵ,000
Volume to be disposed of, cubic yards	N/A	4,500,000	N/A		N/	А	4,500,	000	3,600),000	4,500,0	000	4,500	,000
Number of dredges	3	3	8		4		3		2	4	3		3)
Number of pipelines	3	3	8	1	4		3		(3		3	
Number of barge loads per day	N/A	7	N/A		N/		N//		2		N/A		N/	
Number of truck loads per day	N/A	N/A	N/A		N/		N//			200	1,50		N/	
Dike volume, cubic yards	N/A	420,000	N/A		N/		420,0		N		420,0		420,	
Booster pumps required	9	21	16		8		36		(6		42	
Months of operation	Year-round	Year-round	October-Februar	y (5 months)	July-March		Year-ro		Year-1		Year-ro		Year-r	
Actual operational time, days per year	330	250	94		18		250		25		250		25	
Total sediment removal capacity, cubic yards per day	12,000	12,000	32,00		16,0		12,00		12,0	,	12,00		12,0	
e-Time Investment Costs	Low High	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Н
Real estate/land purchase	\$ 0	\$12,500,000 \$25,000,000	\$10,000	\$40,000	\$10,000	\$40,000	\$20,000	\$100,000	\$440,000	\$880,000	\$12,500,000	\$25,000,000	\$20,000	1
Legal and financial services	\$65,700,000	\$0 \$0	\$0	\$0	\$0	\$0	\$0	\$0	\$ 0	\$0	\$0	\$0	\$ 0	
Design and study costs	\$21,600,000	\$2,000,000 \$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5
Booster pump construction	\$6,800,000	\$6,300,000 \$6,300,000	\$4,800,000	\$4,800,000	\$2,400,000	\$2,400,000	\$10,800,000	\$10,800,000	\$0 20	\$0 \$0	\$1,800,000	\$1,800,000	\$12,600,000	\$12
Permanent pipeline construction	\$5,400,000	\$3,800,000 \$6,200,000	\$3,800,000	\$6,200,000	\$1,900,000	\$3,100,000	\$6,200,000	\$10,100,000	\$0 \$0	\$ 0	\$1,400,000	\$2,300,000	\$8,600,000	\$14
Transfer site/dike construction	\$0 \$5< < 600 0000	\$3,400,000 \$6,700,000	\$0 ©0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,400,000	\$6,700,000 \$0	\$0 ©0	\$0 ©0	\$3,400,000	\$6,700,000	\$3,400,000	\$ 6
Dredging and dewatering plant Reuse manufacturing plant	\$56,600,000 \$212,000,000	\$0 \$0 60 80	\$0 \$0	\$0 ¢0	\$0 \$0	\$0 ©0	\$0 \$0	\$0 ©0	\$0 \$0	30 ¢0	\$0	\$0 \$0	\$0 \$0	
Subtotal	\$368,100,000	\$28,000,000 \$49,200,000	\$10,610,000	\$0 \$16,040,000	\$6,310,000	\$10,540,000	\$22,420,000	\$32,700,000	\$2,440,000	پو \$5,880,000\$	\$21,100,000	\$40,800,000	\$26,620,000	\$38
Subtotal	Costs to be offset by generated	\$20,000,000 \$49,200,000	\$10,010,000	\$10,040,000	\$0,510,000	\$10,540,000	\$22,720,000	\$52,700,000	<i>\$</i> 2, 11 0,000	\$5,000,000	\$21,100,000	\$10,000,000	\$20,020,000	\$50
Annualized, \$/vear	revenues	\$1,194,000 \$2,098,000	\$452,000	\$684,000	\$269,000	\$449,000	\$956,000	\$1,394,000	\$104,000	\$251,000	\$900,000	\$1,739,000	\$1,135,000	\$1
xM/Removal Costs	Low High	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Н
Tipping fee (costs reduced by any generated revenues)	\$87,000,000 \$117,000,000	\$0 \$0	\$0	\$0	10w \$0	\$0	\$4,500,000	\$22,500,000	\$36,000,000	\$54,000,000	\$45,000,000	\$67,500,000	\$45,000,000	\$67
Dredging + transportation	\$0 \$0 \$0	\$45,000,000 \$60,000,000	\$30,000,000	\$45,000,000	\$15,000,000	\$30,000,000	\$60,000,000	\$75,000,000	\$120,000,000	\$210,000,000	\$60,000,000	\$90,000,000	\$60,000,000	\$75
Manufacturing processing	\$0. \$0.	\$0. \$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	¢210,000,000 \$0	\$0	\$0	\$0	÷.5
Construction design and management	\$0. \$0	\$1,000,000 \$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2
Subtotal	\$87,000,000 \$117,000,000	\$46,000,000 \$62,000,000	\$31,000,000	\$47,000,000	\$16,000,000	\$32,000,000	\$65,500,000	\$99,500,000	\$157,000,000	\$266,000,000	\$106,000,000	\$159,500,000	\$106,000,000	\$144
st per Cubic Yard	· · · · · · · · · · · · · · · · · · ·	i i i i i i i i i i i i i i i i i i i	i i i i i i i i i i i i i i i i i i i				i i i i i i i i i i i i i i i i i i i				<u> </u>		ł	
sumes yearly removal)	Low High	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Н
One-time investment cost, \$/cy	\$123	\$9 \$16	\$4	\$5	\$2	\$4	\$7	\$11	\$1	\$2		\$14	\$9	
			,			مې د پ				= -			¢	
Annualized investment cost, \$/cy/year Annual removal cost, \$/cy/year	\$0 \$0 <u>\$29</u> <u>\$39</u>	\$0 \$1 <u>\$15</u> \$21	\$0 <u>\$10</u>	\$0 <u>\$16</u>	\$0 <u>\$5</u>	\$0 <u>\$11</u>	\$0 \$22	\$0 <u>\$33</u>	\$0 <u>\$52</u>	\$0 <u>\$89</u>	0 \$0 9 <u>\$35</u>	\$1 <u>\$53</u>	\$0 \$35	
Total annual cost, \$/cy/year	\$29 \$29 \$39	\$16 \$16 \$21	\$10 \$10	\$16 \$16	<u>\$5</u> \$5	<u>\$11</u> \$11	<u>\$22</u> \$22	<u>\$33</u> \$34	\$52 \$52	<u>302</u> \$89	\$36	<u>\$55</u> \$54		
							422	49 I						
ajor Limitations	Substantial commitment to	Currently not allowed by law;	Environmental imp		Environmental ir	npacts; NMFS			Large parcels adj		Large parcels expe		Effluent from de	
	continual use would be required	large parcels adjacent to the	concerns	с	oncerns				reservoir may be	e difficult to find	difficult to find ne	arby	need to be pump	
		river may be very difficult to											Susquehanna Riv	er
		find										_		
Constal Assumptions	These are concept level as to	for planning purposes only. De	tailed design and	agat actimate	would be requi	and for any fut	no studios invest	igation impla	nontation of any	u of these alter	ativos			
General Assumptions:		dging of a location in Conowir										developed fo	r the other lowe	Susar
	reservoirs.	0 8				in in acpe		and a start		- , - , , , , ,				
T					¢10.000	÷.	\$3 0,000			C	Land Lana 2012		61	
Technical Assumptions:		in Harford/Cecil County, MD; rat			\$10,000		1			0	land June 2013; ass	ume large tracts	s or land available	•
	Annualization factor =	23.456 for interest = n separate pipeline and associated			project life of				for annualization	1 —	3 \$300,000			
		n separate pipeline and associated idd a signficant amount of volume				- +,000 cubic ya		mes the dredgi			4000,000			
						cume that mat-					15 -	mee the crisi-	al dredoing right-	e
		nove a significant amount of the w					nai to be transport	ed after drying 1.2		-	1.5 ti	mes the origina	al dredging volum	е.
		hanical dredge = 500 cubic yards ort to Pooles Island, each barge is		nume is increase			n-reservoir dredgi		, during dredging			500	cubic yards/barg	re
	Permanent pipeline cost =	\$160,000 to		er mile (\$30-50)		Lubic yatus; IOf	m-reservoir dredgi	ng, the capacity	would be much	smaner, offly		500	cubic yarus/ barg	с.
	1 1	$s_{100,000}$ to to $s_{100,000}$ to $s_{100,000}$ to $s_{100,000}$	1	(- I	· /	cy construction	cost							
										C0534			and amount for a	neline
	Tinning fee for Stancile Outers is	s assumed to be $$1-5/cv$ with a top	tal volume available.	of 9Mour tinnin	a tee tor Macon) hyon (higher o	s based on SILLIS	CV and a total v	volume available	of in Mer the to	nning tees are apply			
	Tipping fee for Stancils Quarry is and to the trucked amount for tru	s assumed to be \$1-5/cy with a to uck delivery; outright purchase of				-Dixon Quarry 1	s based on \$10-15,	cy and a total	volume available	of 35Mcy; the ti	pping fees are appl.	ied to the dred	ged amount for ps	penne

	Innovative D			Onen Wet	Diagoment						Haland	Placement			
	Innovative Reuse Alternative 1	Alternat	tive 2A	Open Water Alterna		Alternat	ive 2C	Alternat	ive 3A	Alterna	A		ative 3C	Alternat	tive 3D
cal Description															
Sediment to be removed, cubic yards	5,000,000	5,000		5,000		5,000,		5,000,		5,000			0,000	5,000	<u> </u>
Sediment to be removed, tons	4,050,000	4,050		4,050		4,050,		4,050,		4,050			0,000 1:	4,050	
Гуре of dredging Transportation method	Hydraulic Pipeline	Hydra Pipeline		Hydr Pipe		Hydra Pipel		Hydra Pipeli		Mecha Barge + transf		Hyd Pipeline + di	ke + trucking	Hydr Pipeline + dis	
Distance to be transported, miles	10	1 ipenne 8+2		3		3	ine	13		0+0)+12	14 -	
Distance to be transported, nines		Drying/trans				· · · · · · · · · · · · · · · · · · ·		Will need dike co						Will need dike o	
Location/type of containment site	Bainbridge, slurry screened, water returned, solids stockpiled	Susquehanna St dike cons	tate Park, with	N/	'A	N/.	A	quarry for dewate	ering to extend	Shoreline tr	ransfer site	Nearby drying s dike con	ite required with struction	quarry for dewat	ering to ex
Final destination of material	Concrete block market	Pooles	Island	Susquehan approximately Conowin	1 mile d/s of	Susquehani approximately Conowing	mile d/s of	Stancills (Mason-Dix	on Quarry	Mason-Di	xon Quarry	Mason-Dixon Q site	
Number of dredging cycles that facility could be used	Facility has a useful life of more	Unknown, due to	o local sediment		<u> </u>	· · · · · · · · · · · · · · · · · · ·	, 						-		
before capacity is reached	than 40 years	trans		No lim	itation	No limi	ation	1		6)		5	5	
Land to be purchased, acres	100	2,08	80	1-	2	1-2	2	2-5	5	7:	2	2,0)80	2-	5
ction Calculations															
Volume to be removed, cubic yards	5,000,000	5,000	,000	5,000	,000	5,000,	000	5,000,	.000	5,000	,000	5,00	0,000	5,000	,000
Volume in pipeline (4X), cubic yards	20,000,000	20,000		20,000	0,000	20,000	,000	20,000	,000	N/			0,000	20,000),000
Volume to be disposed of, cubic yards	N/A	7,500		N/		N/.		7,500,		6,000		7,50		7,500	·····
Number of dredges	5	5		12		7		5		4			5	5	
Number of pipelines	5	5		12		7		5		0			5	5	
Number of barge loads per day	N/A	12		N/		N/.		N/.		4			/A	N/	
Number of truck loads per day	N/A	N/		N/		N/.		N/4		2,0			500	N/	
Dike volume, cubic yards	N/A	700,0		N/		N/.		700,0		N/			,000	700,0	
Booster pumps required Months of operation	15 Year-round	35 Year-r		24 October-Februa		14 July-March (60 Voor #		(Year-1] Year-	0 round	7(Year-r	
Months of operation Actual operational time, days per year	Year-round 330	Year-r 25		October-Februa 10		July-March (Year-ro 250		Year-1 25			round 50	Y ear-r 25	
Total sediment removal capacity, cubic yards per day	20,000	20,0		48,0		28,0		20,00		20,0			000	20,0	
			‡												
<u>Fime Investment Costs</u>	Low High	Low	High	Low	High \$40,000	Low	High	Low \$20,000	High	Low	High \$1,440,000	Low	High	Low \$20,000	H
Real estate/land purchase Legal and financial services	\$0 \$88,000,000	\$20,800,000	\$41,600,000	\$10,000	\$40,000	\$10,000	\$40,000	\$20,000	\$100,000	\$720,000	\$1,440,000	\$20,800,000	\$41,600,000	\$20,000	\$
Design and study costs	\$88,000,000 \$26,100,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5,000,000	\$2,000,000	\$5.
Booster pump construction	\$20,100,000 \$11,300,000	\$10,500,000	\$10,500,000	\$7,200,000	\$3,000,000 \$7,200,000		\$3,000,000 \$4,200,000	\$18,000,000	\$18,000,000	\$2,000,000	\$3,000,000 \$0	\$3,000,000	\$3,000,000	\$21,000,000	\$3, \$21,
Permanent pipeline construction	\$9,000,000	\$6,400,000	\$10,400,000	\$5,800,000	\$9,400,000	\$3,400,000	\$5,500,000	\$10,400,000	\$16,900,000	\$0 \$0	04 08	\$2,400,000	\$3,900,000	\$14,400,000	\$21,
Transfer site/dike construction	\$9,000,000	\$5,600,000	\$11,200,000	\$3,800,000 \$0	\$2,400,000	\$0,400,000	\$3,300,000 \$0	\$5,600,000	\$10,900,000	30 \$0	94 \$0	\$5,600,000	\$11,200,000	\$5,600,000	\$2.5, \$11,2
Dredging and dewatering plant	\$78,200,000	<i>\$</i> 5,000,000	<i>q</i> 11,200,000	40	ęo		Ŷ0	\$5,000,000	<i>q</i> 11,200,000	ΨŪ	40	45,000,000	φ11 , 200,000	\$5,000,000	ψ11,2
Reuse manufacturing plant	\$298,800,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
Subtotal	\$511,400,000	\$45,300,000	\$78,700,000	\$15,010,000	\$21,640,000	\$9,610,000	\$14,740,000	\$36,020,000	\$51,200,000	\$2,720,000	\$6,440,000	\$33,800,000	\$64,700,000	\$43,020,000	\$60,
	Costs to be offset by generated														
Annualized, \$/year	revenues	\$1,931,000	\$3,355,000	\$640,000	\$923,000	\$410,000	\$628,000	\$1,536,000	\$2,183,000	\$116,000	\$275,000	\$1,441,000	\$2,758,000	\$1,834,000	\$2,5
/Removal Costs	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hiş
Tipping fee (costs reduced by any generated revenues)	\$130,000,000 \$195,000,000	\$0	\$0	\$0	\$0	\$0	\$0	\$7,500,000	\$37,500,000	\$60,000,000	\$90,000,000	\$75,000,000	\$112,500,000	\$75,000,000	\$112,
Dredging + transportation	\$0 \$0	\$75,000,000	\$100,000,000	\$50,000,000	\$75,000,000	\$25,000,000	\$50,000,000	\$100,000,000	\$125,000,000	\$200,000,000	\$350,000,000	\$100,000,000	\$150,000,000	\$100,000,000	\$125,0
Manufacturing processing	\$0 \$0	\$0	\$ 0	\$0	\$ 0	\$0	\$ 0	\$0	\$ 0	\$0	\$ 0	\$0	\$0	\$ 0	
Construction design and management	\$0 \$0	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,000,000	\$1,000,000	\$2,
Subtotal	\$130,000,000 \$195,000,000	\$76,000,000	\$102,000,000	\$51,000,000	\$77,000,000	\$26,000,000	\$52,000,000	\$108,500,000	\$164,500,000	\$261,000,000	\$442,000,000	\$176,000,000	\$264,500,000	\$176,000,000	\$239,
<u>per Cubic Yard</u> mes yearly removal)	Low High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Hi
One-time investment cost, \$/cy	\$102	\$9	\$16	\$3	\$4	\$2	\$3	\$7	\$10	\$1	\$1	\$7	\$13	\$9	
Annualized investment cost, \$/cy/year	\$0 \$0	\$0	\$1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1	\$0	
Annual removal cost, \$/cy/year	<u>\$26</u> <u>\$39</u>	\$15		<u>\$10</u>	<u>\$15</u>		<u>\$10</u>	<u>\$22</u>	\$33	<u>\$52</u>	<u>\$88</u>	\$35		<u>\$35</u>	
l'otal annual cost, \$/cy/year	\$26 \$39	\$16	\$21	\$10	\$16	\$5	\$11	\$22	\$33	\$52	\$88	\$35	\$53	\$36	
Limitations	Substantial commitment to	Currently not allo	owed by law;	Environmental ir	npacts; NMFS	Environmental in	pacts; NMFS			Large parcels adj	acent to the	Large parcels ex	pected to be	Effluent from de	waterin
		large parcels adja		concerns		concerns				reservoir may be				need to be pump	
		river may be very	difficult to											Susquehanna Riv	er
		find													
Committee	·			- H - 4 - 1 - 1	4		. d. C				-641 1				
General Assumptions:	These are concept-level costs f		• •	0		-	•		• •	•					
	All alternatives assume the dre	aging of a locati	on in Conowing	go Keservoir wh	ich currently h	as the highest an	ounts of depo	sition in the entir	re Iower Susqu	enanna reservoi	r system; simil:	ar costs could be	e developed for t	ne other lower S	ousque
	reservoirs.														
Technical Assumptions:	Real estate cost = farmland cost i					\$10,000							sume large tracts	of land available.	
	Annualization factor =		for interest =			nd project life of				for annualization	. =	3			
	Each hydraulic dredge has its own						4,000 cubic ya					\$300,000			
	Hydraulic dredging process will a								imes the dredgi	0					
	Drying process will be able to ren							ial to be transporte	, 0			1.5	times the original	dredging volum	e.
	Production capacity for one mech				olume is increas				1.2	, during dredging					
	Barge capacity varies; for transpo				1 /mao =		ubic yards; for	in-reservoir dredgi	ng, the capacity	would be much s	maller, only		500	cubic yards/barg	e.
				\$260,000	per mile (\$30-5)	0 per linear foot).									
	Permanent pipeline cost =	\$160,000			1 (-	1 /									
	Transfer site/dike construction co	ost = 5-foot high	dike for 3 feet of	material, drying	time of 2 month	ns per cell, \$8-16/c									c
		ost = 5-foot high assumed to be \$1	dike for 3 feet of	material, drying	time of 2 month	ns per cell, \$8-16/c			dredged amoun	t for pipeline deliv	very and to the t	rucked amount fo	or truck delivery; o	outright purchase	of qua

1 - Innovative Reuse HarborRock Light Weight Aggregate

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir SCENARIO

SCENARIO

Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir. It is envisioned the slurry from the dredge will be pumped to a site along the shore line where it will pass over a series of screens to remove large debris or rocks, items nominally greater than 1 inch in diameter or length. This large material will be sold or disposed. The slurry will fail into a sump where it will be pumped downstream in a pipeline to a HarborRock placement site located at the Bainbridge property west east of Port Deposit. The HarborRock site will be 100 acres. The slurry from the pipeline will be spired to a site for subsequent drying and use. Some of water will be stired and used on site for process applications and the remainer will flow by separate pipeline down to the Susquehanna River for discharge. The LWA will use the sits board and and part of the sits its lightweight aggreagte (LWA) product. For each CY dredged nominally 0.7 tons of LWA will be produced. The LWA will be distributed for sale by truck and by barge.

ASSUMPTIONS/BASIS FOR ESTIMATE:

This fact sheet makes a number of assumptions and qualifications in regards to removing sediment behind the Conowingo Dam via dredging and pumping the dredged sediment thru pipes to a location where a industrial plant can mechanical dewater the piped sediment. Once dewatered the dry sediment can be placed into a gas fired kiln to create Light Weight Aggregate (LVA) for construction material.

First – This initial effort only includes dredging for the Conowingo Dam in the Conowingo Reservoir. In the future other fact sheets could be developed for dredging Safe Harbor and Holtwood Dams.

Second – A CY of sediment is estimated to contain 0.81 tons of solid matter. harborRock has also assumed that a CY of sediment will contain debris or other materials, such as large stones, that are unsuitable for making LWA and that this fraction amounts to 5% of the weight in solidis or 0.04 tons per CY of sediment. Therefore, a CY of sediment contains 0.77 tons of dry solid matter suitable to make LWA. In a rotary kiln, a bone dry ton of input material (sediment) yields nominally 0.9 tons of Light Weight Aggregate (LWA). Therefore, 1 CY of sediment will yield 0.69 tons of bone dry LWA, 0.7 tons for simplicity. Alternatively, 1 million CYs of sediment will yield 700,000 tons of LWA.

Rotary kilns may be sized to match the annual throughput need. For this project it would be easy to design a kiln to process 1.0 million CY per year of sediments, therefore necessitating 1, 3 or 5 kilns as the project grows. This is perfectly acceptable and the modularity allows for project expansion and expenditure of funds as needed. This method however does increase the number of operating systems and total cost. Alternatively, if it were known that 3 million CY per year were required to be processed, 2 kilns, each rated to process 1.5 million CYs per year would be selected or 3 kilns each rated for nominally 1.67 million CYs per year if the goal was to process 5.0 million CYs per year. For purposes of this analysis 1 kiln will be used for 1 MCY, 2 kilns for 3 MCY and 3 kilns for 5 MCY and the corresponding ancillary systems.

Fourth - HarborRock's Sediment Management Fee, in addition to the revenue earned from the sale of its LWA product, is the amount needed to offset their cost "All – In" capital and operating costs for the LWA plant and provide a return on equity to its investers. these costs include operating all the equipment necessary to remove the sediments from the reservoir through pumping them to a location, producing and selling the lightweight aggregate product.

Description of Site and/or dewatering Locations and Processing Facility Where Applicable

This alternative consists of acquisition of **100 acres** of land the where a Light Weigh Aggregate (LWA) Plant will be constructed, which converts sediment behind the Conowingo Dam into light weight aggregate. The beneficial use of the dredged material is the creation of Light Weight Aggregate (LWA), which can be used for construction purposes. Suitable sites would be **100 acres and will** need access to roads, rail, and or barge infrastructure. One or more dredges would be needed in addition a pipeline and pumps to move the dredged material to the processing plant. The Plant will comprise of DM Slurry Storage tanks , Filter Press's and Flash Dryers, Pellet Extruders, Thermal Processing kinks, Air Emission Control, Turbines for electrical generation, and a structure to house said equipment. The representative site would be located in the area 15 miles between Conowingo Dam and Holtwood dam and up to 5 miles inland from the river, or could be further downstream and up to 5 miles inland from the river in the 10 mile area between Havre De Grace and Conowingo Dam. The area available for a facility is only limited the hydraulic pumping distance. At the plant, the dredged material will be unloaded, stocked in the DM Slurry Tanks, and then Processed. Additional area will be needed to stockpile the light weight aggregate that is produced. It is assumed that the water from the dewatering process will be pumped back the Susquehanan river.

Evaluation of Available Capacity:

Total Amount of Material to be dredged (CY)	Sediment to be Removed Tons @ 0.81 tons per Cubic Yard	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day or 1000000 CY/yr) per Dredge	Actual CY of Sediment Plus Water Volume Hydraulically Dredged (water adds 4 times the original volume)	Distance to be Piped (miles)	
1,000,000	810,000	1	4,000,000	10	
3,000,000	2,430,000	3	12,000,000	10	
5,000,000	4,050,000	5	20,000,000	10	

Total Amount of Material to be dredged (CY)	Number of Pipes	Number of Booster pumps		Acreage Needed for Storage of Hydraulically Dredged Material (acres)	
1,000,000	1	3	80	20	100
3,000,000	3	9	80	20	100
5,000,000	5	15	80	20	100

Total Amount of Material to be dredged (CY)	Number of Slurry Screening Operations	Number of Rotary Dryers	Number of Flash Dryers	Number of Pellet Extruders	
1,000,000	2	1	1	4	
3,000,000	4	2	2	8	
5,000,000	6	4	4	16	

Ideally, there would be a site of approximately 2 acres size on-shore at the Conowingo Resevoir to allow for slurry screening to remov debris and a collection station of the outputs from the multiple dredges to allow for uniform and consisnet pumping of the slurry down: Removing large debris from the slurry initially will improve reliability, save time and cost.

Total Amount of Material to be dredged (CY)	Number of Kilns	Number of Coolers	Number of Smoke Stacks	Number of Air Emission Controllers	
1,000,000	1	1	1	1	Multiple stacks are proposed to allow for maximum reliability and up time for operations. The loss of a kiln or other device in a single tr
3,000,000	2	2	2	2	would then only affect that train.
5,000,000	3	3	3	3	

COSTS

One-Time Investment Costs

Total Amount of Material to be dredged (CY)	Design and study costs (includes development, permitting and engineering)	Legal and Financial services (includes capitalized interest, debt service and major maintanence reserve funds and fees)	Booster pump construction	Permanent pipeline construction	Dredging & dewatering plant	Reuse manufacturing plant, buildings & shipping equipment	TOTAL
1,000,000	13,339,450	27,645,057	2,250,000	1,800,000	28,553,813	108,239,629	\$181,827,948
3,000,000	21,599,677	65,652,691	6,750,000	5,400,000	56,637,522	212,015,378	\$368,055,267
5,000,000	26,099,677	88,044,244	11,250,000	9,000,000	78,196,230	298,780,385	\$511,370,536

O&M/Removal Costs

Total Amount of Material to be dredged (CY)	Manufacturing processing	Management and financial repayment (30 yrs.)	TOTAL
1,000,000	\$43,136,320	\$17,095,261	60,231,581
3,000,000	\$120,478,090	\$31,758,675	152,236,765
5,000,000	\$203,180,414	\$42,499,175	245,679,589

Sales Revenue

Total Amount of Material to be dredged (CY)	Net LWA Rrevenue (gross sales minus profit)		
1,000,000	\$11,907,480		
3,000,000	\$42,461,770		
5,000,000	\$67,780,000		
Tip Fee Range - Privately			
financed			
Total Amount of Material to be dredged (CY)	Expected	Low	
1,000,000	\$48	\$46	
3,000,000	\$37	\$34	
5 000 000	\$36	\$32	

Tip Fee Range - Publically financed

innanoou			
Total Amount of Material to be dredged (CY)	Expected	Low	High
1,000,000	Unknown	\$39	\$40
3,000,000	Unknown	\$29	\$33
5,000,000	Unknown	\$26	\$33

Note:

If the total quantity to be dredged annually is known at start of design, then there may be fewer total systems, stacks etc. used.

Elimination of Booster pumps and pipeline one-time investment costs lowers Tip Fee by \$1.00 - 2.00/CY

There is 1 pipeline and associated booster pumps per 1 MCY.

Economies of scale would result if pipeline were designed to maximum flow, eliminating multiple pipes. It would appear a good size for the pipeline would be 3.42 MCY. At this size, increasing operational days from 250 to 365 increases annual flow by a factor Private Finance = 80% debt finaced over 30 years at 5.25% per annum.

Public Finace = 100% debt finaced at 3.75% per annum for 50 years

High \$50 \$39 \$39

2A - Open Water Placement

Pooles Island Open Water Placement

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

SCENARIO

Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped downstream to a temporary placement site that is available near Port Deposit. At this location material can be dewatered and loaded into barges. Once the dredged material is placed onto the barges it will be moved to a placement site at Pooles Island, Md.

ASSUMPTIONS/BASIS FOR ESTIMATE:

1) The Pooles Island placement area is assumed to be 350 acres, the expansion of the Pooles Island site connects G-West to Site 92. Allowable fill would be to a depth to -11' MLLW.

2) The 350 ac site is identified as having 4.7 mcy of capacity which would result in an 8.3 ft placement thickness (4,700,000cy x 27cf/cy /350 ac / 43560 cf/ac = 8.32 ft thick). The assumption holds that Pooles Island capacity to handle new material recharges yearly allowing for 4.7 CY of material to be placed every year.

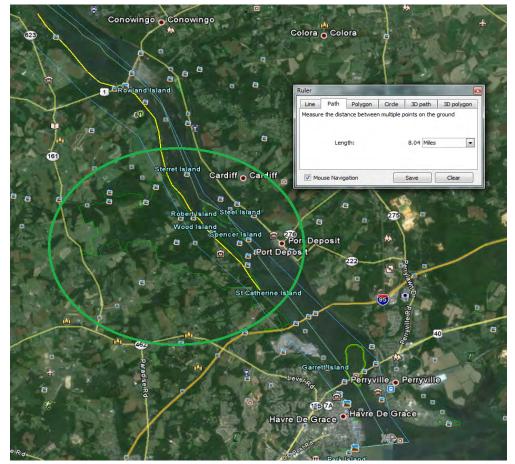
3) Assume 1 cy of sediment contains 0.81 tons of solids.

4) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

5) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.

6) Approximately 7 boosters per pipe at \$300,000 per booster will be needed to get hydraulically dredged material to a temporary placement site that is assumed to be available across the river from Port Deposit (circled in green in the picture below) the dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.

7) The Legislative restrictions for open water placement at Pooles Island would be lifted or suspended. Opposition from the fishing community will be assuaged.


8) Dredged material would first be removed from the reservoir via hydraulic dredging and pumped to a temporary holding site near Port Deposit. This site would be a number of acres surrounded by a sediment holding dike which will contain the dredged material while it is dewatered by working and trenching the material with bulldozers. Drying the material will take approximately 4 months per cell.

9) After the sediment is dewatered the material will then be mechanically loaded into barges via clam shell dredge or large excavators and transported to the Pooles Island placement site ~30 Miles by barge The material would then be pumped from the barge into the Pooles Island open water site.

10) We are assuming a 2500 cy / barge will have access to transfer sites at our temporary dewatering site

11) Equipment needed: Dredge's, Pipe, Booster Pumps, Excavators (enough to remove the same amount of material that the dredge pumps per hour), Bulldozers (to trench and move material for drying), Barges.

Potential temporary placement sites across river from Port Deposit in the Susquehanna St Park with access to River.

Location of Pooles island

Evaluation of Available Capacity:

Total Amount of Material to be dredged (CY)	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day or 1000000 CY/yr) per Dredge		Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be Piped (miles)	Number of Pipes	Number of Booster pumps	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft or 1 yd depth
1,000,000	1	250	4,000,000	8	1	7	800
3,000,000	3	250	12,000,000	8	3	21	2,500
5,000,000	5	250	20,000,000	8	5	35	4,100

Total (CY) of Sediment Plus Water Volume Placed into Temporary Holding Cells During One Year	Equivalent Acreage of Hydraulically Dredged	Acreage needed for 6 drying Cells which are used 2 times per year for temporary placement		Dike Length in Feet for 6 cells	cells at 5 ft elevation	Dewatered Volume of Material (1.5 times original amount dredged)
4,000,000	800	420	70	33,200	140,000	1,500,000
12,000,000	2,500	1,250	210	99,600	420,000	4,500,000
20,000,000	4,100	2,080	350	166,000	700,000	7,500,000

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	
Pump	1	2	3	4	5	6	
Dry	2,3,4,5	3,4,5,6	4,5,6,7	6,7,8,9	7,8,9,10	8,9,10,11	Cycle 1
Remove	6	7	8	9	10	11	
Pump	7	8	9	10	11	12	
Dry	8,9,10,11	9,10,11,12	10,11,12,1	11,12,1,2,	12,1,2,3	1,2,3,4	Cycle 2
Remove	12	1	2	3	4	5	1

Volume of Material to be barged to Pooles Island After Drying (CY)	Volume of Dried Material per Drying Cell (CY)	Area of one Drying Cell (acres)	Transfer pads and associated 400 Cy/hr transfer excavators per Drying Cell	Number of barge loads per day	Number of loads per year at 2500 cy/barge	Percentage of Material Dredged per year that Pooles island can Handle per year (%)	# of dredging cycles that facility could be used before capacity is reached
1,500,000	130,000	70	1	2	600	100	Unknown
4,500,000	380,000	210	4	7	1,800	100	Unknown
7,500,000	630,000	350	7	12	3,000	63	Unknown

2B - Open Water Placement 5 Months of Sediment Bypassing

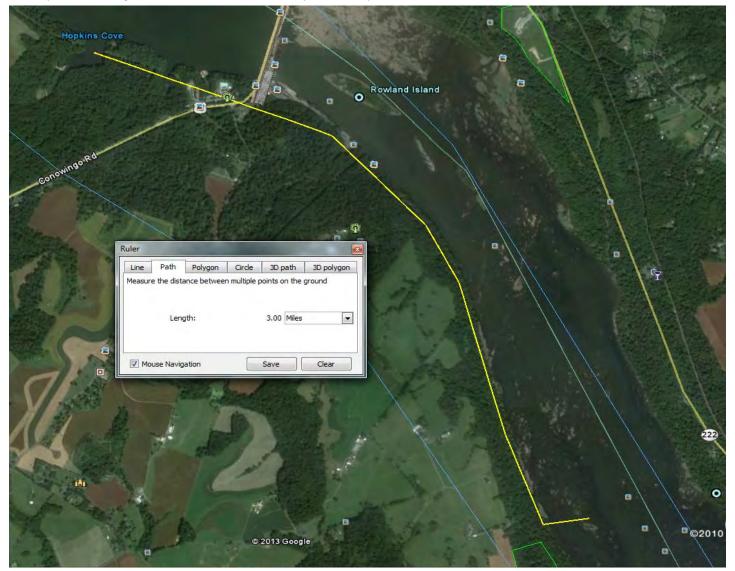
Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

SCENARIO Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped past Conowingo Dam downstream to a release point bypassing sediment over 5 months from October - February. ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cv of sediment contains 0.81 tons of solids

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are approximately 105 work days in five months and up to 10 work hours days.


4) A sediment release point can be found down stream of the dam where channel hydraulics would promote sustainable sediment transport.

5) Approximately 2 boosters per pipe at \$300,000 per booster are needed to get hydraulically dredged material past Conowingo Dam. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.

6) The Legislative restrictions for open water placement would be lifted or suspended. Opposition from the fishing community will be assuaged.

7) Equipment needed: Dredge's, Pipe, Booster Pumps.

Sediment Pipe around Conowingo Dam and location of Down Stream Release point in the Susquehanna River.

Evaluation of Available	Capacity:						
	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day per Dredge at 21 days per month or 84000 CY per month	Number of days to dredge amount at given	Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be piped (miles)	Number of Pipes	Number of Booster pumps	Percentage of Material Dredged per year that can be Bypassed per year (%) (No Total Capacity Limit)
1,000,000	3	83	4,000,000	3	3	6	100
3,000,000	8	94	12,000,000	3	8	16	100
5,000,000	12	104	20,000,000	3	12	24	100

2C - Open Water Placement 9 Months of Sediment Bypassing

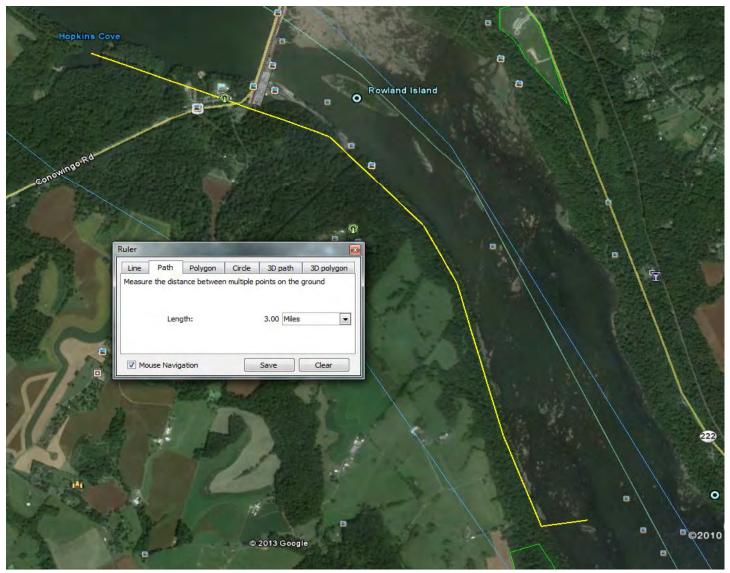
Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

SCENARIO Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped past Conowingo Dam downstream to a release point bypassing sediment over 9 months from July-March. ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cv of sediment contains 0.81 tons of solids

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are approximately 190 work days in nine months and up to 10 work hours days.


4) A sediment release point can be found down stream of the dam where channel hydraulics would promote sustainable sediment transport.

5) Approximately 2 boosters per pipe at \$300,000 per booster are needed to get hydraulically dredged material past Conowingo Dam. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.

6) The Legislative restrictions for open water placement would be lifted or suspended. Opposition from the fishing community will be assuaged.

7) Equipment needed: Dredge's, Pipe, Booster Pumps.

Sediment Pipe around Conowingo Dam and location of Down Stream Release point in the Susquehanna Rive

Evaluation of Available	Capacity:						
	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day per Dredge at 21 days per month or 84000 CY per month	Number of days to dredge amount at given	Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be piped (miles)	Number of Pipes		Percentage of Material Dredged per year that can be Bypassed per year (%) (No Total Capacity Limit)
1,000,000	2	125	4,000,000	3	2	4	100
3,000,000	4	188	12,000,000	3	4	8	100
5,000,000	7	179	20,000,000	3	7	14	100

3A - Upland Placement

Stancil Quarry Upland Placement

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir SCENARIO

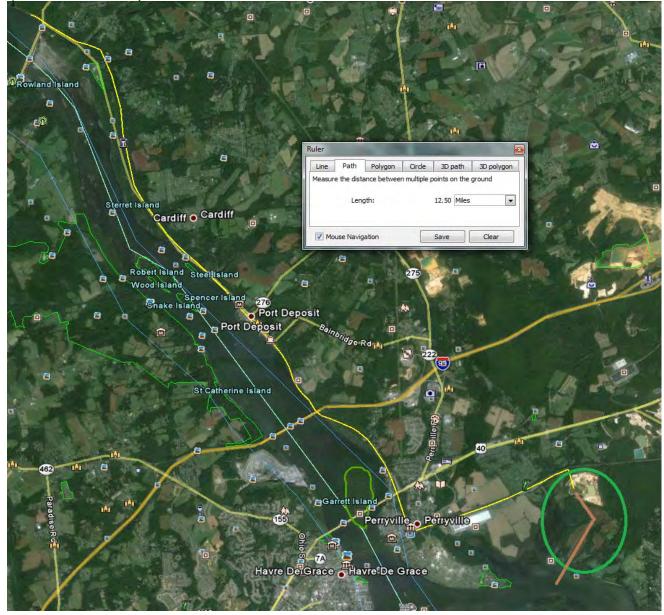
Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped downstream to a dewatering site at Stancil Quarry before it is placed in a permanent site that is available at Stancil Quarry.

ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cy of sediment contains 0.81 tons of solids.

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.


4) Approximately 12 boosters per pipe at \$300,000 per booster will be needed to get hydraulically dredged material to Stancil Quarry. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.

5) Dredged material would first be removed from the reservoir via hydraulic dredging and pumped 13 miles to a holding area at Stancil Quarry where it can be dewatered to the Susquehanna flats. Once the material is dewatered it can be placed perminantly in final fill areas at the quarry. The dewatering site at the quarry would be a number of acres surrounded by a sediment holding dike which will contain the dredged material while it is dewatered by working and trenching the material with bulldozers. Drying the material will take approximately 4 months per cell.

6) After the sediment is dewatered the material will then be pushed and moved via bulldozer and excavator to a final fill location within Stancil Quarry.

7) Equipment needed: Dredge's, Pipe, Booster Pumps, Excavators, Bulldozers (to trench and move material for drying).

Pump and Placement at Stancil Quarry

Attach J-2Upland Placement A-B-C V-8.xlsx

Evaluation of Available Capacity:

	andanon of Avanable Capacity.								
Total Amount of Materia to be dredged (CY)	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day or 1000000 CY/yr) per Dredge		Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be Piped (miles)	Number of Pipes	Number of Booster pumps	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft or 1 yd depth		
1,000,000	1	250	4,000,000	13	1	12	800		
3,000,000	3	250	12,000,000	13	3	36	2,500		
5,000,000	5	250	20,000,000	13	5	60	4,100		

Total (CY) of Sediment Plus Water Volume Placed into Temporary Holding Cells During One Year	Equivalent Acreage of Hydraulically Dredged	Acreage needed for 6 drying Cells which are used 2 times per year for temporary placement		Dike Length in Feet for 6 cells	cells at 5 ft elevation	Dewatered Volume of Material (1.5 times original amount dredged)
4,000,000	800	420	70	33,200	140,000	1,500,000
12,000,000	2,500	1,250	210	99,600	420,000	4,500,000
20,000,000	4,100	2,080	350	166,000	700,000	7,500,000

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	
Pump	1	2	3	4	5	6	
Dry	2,3,4,5	3,4,5,6	4,5,6,7	6,7,8,9	7,8,9,10	8,9,10,11	Cycle 1
Remove	6	7	8	9	10	11	
Pump	7	8	9	10	11	12	
Dry	8,9,10,11	9,10,11,12	10,11,12,1	11,12,1,2,	12,1,2,3	1,2,3,4	Cycle 2
Remove	12	1	2	3	4	5	

Volume of Material for Permanent placement at Stancil Quarry After Drying (CY)	Volume of Dried Material per Drying Cell (CY)	Area of one Drying Cell (acres)	Percentage of Material Dredged per year that Stancil Quarry can Handle per year (%)	# of dredging cycles that facility could be used till capacity is reached
1,500,000	130,000	70	Unknown	6
4,500,000	380,000	210	Unknown	2
7,500,000	630,000	350	Unknown	1

3B - Upland Placement

Mason Dixon Quarry Upland Placement - Mechanical Dredge

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir

SCENARIO

Mechanical dredges will be used to remove sediment from the Conowingo Reservoir and place that sediment into barges, then the barges will circulate between the dredges and the southern shoreline where their contents will be offloaded via excavators. The southern shoreline was chosen due to the rail line on the northern shoreline, which would make offloading the barges too expensive or potentially unfeasible. There will be staging areas on the southern shoreline for the transfer of dredge material from each barge to the trucks An excavator at each transfer site will then place the wet material into trucks able to hall 12 cy of wet material. Each staging area will have one excavator which will unload the barge and transfer its contents to the trucks at a assumed rate of one truck every 10 minutes. The trucks will then cross the Conowingo Bridge and drive to Mason Dixon Quarry where they will unload their contents, and return to be filled again.

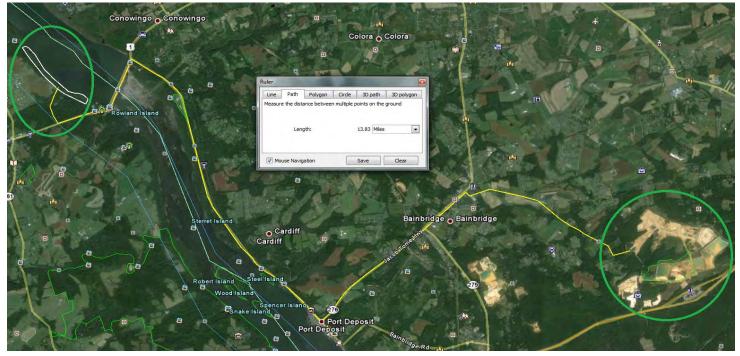
ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cy of sediment contains 0.81 tons of solids

2) An initial estimate of the sizing of a mechanical dredge for Conowingo reservoir suggested a mechanical dredge capable of removing remove 500 CY / day would be the minimum size dredge needed..

3) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.

4) Pipes or pumping of sediment infrastructure are not needed for the logistics of this example.


5) Dredged material would first be removed from the reservoir via mechanical dredging and barged to a transfer sites on the Conowingo Reservoir southern shore. There the wet material will be transferred to trucks via excavators. The material will then be trucked to Mason Dixon Quarry for final placement.

6) The depth necessary to move the required number of 500 CY barges is present or can be dredged, and the dock structure to allow excavators to transfer sediment from barge to truck will be able to be constructed.

7) Any temporary to permanent road structures to allow sediment trucks to access state, or county roads and highways will be built, and all road access for the large number of trucks will be approved.

8) Equipment needed: Mechanical Dredge, Barges, Trucks, Excavators, and Bulldozers (to move material at Mason Dixon Quarry).

Potential barge truck transfer site with Truck access to Roads and the location of Mason Dixon quarry

Evaluation of Available Capacity: Based on Mechanical Dredging

		Number of Dredges at 500 CY/day per Dredge	dredge amount at given	Actual CY of Sediment Plus Water Volume Mechanically Dredged (1.2 times original amt.)	per day at 500 CY per	~ Total Number of Truck Loads Per Day @ ~42 Truck Loads per Barge	Loads Per Vear	Number of Transfer sites at 6 trucks per hour per transfer site
Γ	1,000,000	8	250	1,200,000	9.6	400	100000	10
Γ	3,000,000	24	250	3,600,000	28.8	1200	300000	29
Γ	5,000,000	40	250	6,000,000	48.0	2000	500000	48

Transfer Area needed at 1.5 Transfer	acres per	Volume of Material for Permanent placement at Mason Dixon Quarry (CY)	Percentage of Material Dredged per year that Mason Dixon can Handle per year (%)	# of dredging cycles that facility could be used till capacity is reached
15		1,200,000	Unknown	29
44		3,600,000	Unknown	10
72		6,000,000	Unknown	6

3C - Upland Placement Mason Dixon Quarry Upland Placement - Hydraulic Dredge

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir SCENARIO

Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped downstream to a dewatering site that is across the Susquehanna River from Port Deposit. At this location material can be dewatered then once dried the material can be placed onto the trucks via excavators to be moved to a final placement site at Mason Dixon Quarry.

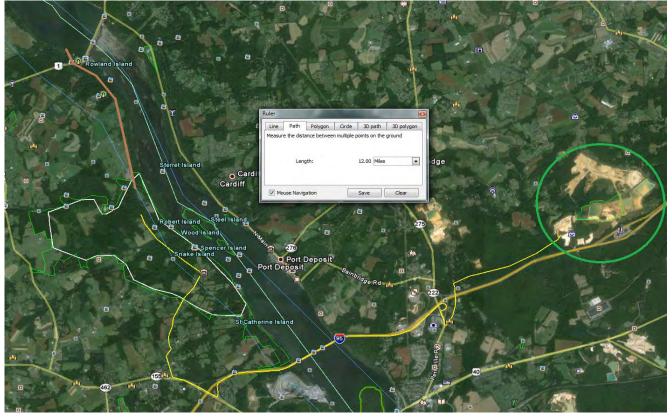
ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 cy of sediment contains 0.81 tons of solids.

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.

4) Approximately 2 boosters per pipe at \$300,000 per booster will be needed to get hydraulically dredged material to past Conowingo Dam 3 miles to a temporary placement site assumed to be available (the area outlined in white in picture below) across the Susquehanna River from Port Deposit. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.


5) Dredged material would first be removed from the reservoir via hydraulic dredging and pumped 3 miles to a holding area across the river from Port Deposit, where it can be dewatered. Once the material is dewatered it can be loaded onto trucks to be transported to Mason Dixon Quarry. The dewatering site would be a number of acres surrounded by a sediment holding dike which will contain the dredged material while it is dewatered by working and trenching the material with bulldozers. Drying the material will take approximately 4 months per cell.

6) After the sediment is dewatered the material will then be mechanically loaded into trucks via excavators and transported to the Mason Dixon Quarry final placement site ~12 Miles by truck and going over the Millard E. Tydings Bridge which is part of interstate 95 and driving on other state and Local Roads roads and some temporary roads created for this project. The material would then be offloaded from the trucks to the final placement site at the quarry.

7) Any temporary to permanent road structures to allow sediment trucks to access state, or county roads and highways will be built, and all road access for the large number of trucks will be approved.

8) Equipment needed: Dredge's, Pipe, Booster Pumps, Excavators, Bulldozers (to trench and move material for drying), and Trucks.

Potential dewatering placement sites across river from Port Deposit in the Susquehanna St Park with Truck access to Roads and the location of Mason Dixon quarry.

Evaluation of Available Capacity:	
-----------------------------------	--

Total Amount of Material to be dredged (CY)	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day or 1000000 CY/yr) per Dredge	Number of days to dredge amount at given number of dredges.	Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be Piped (miles)	Number of Pipes	Number of Booster pumps	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft or 1 yd depth		
1,000,000	1	250	4,000,000	3	1	2	800		
3,000,000	3	250	12,000,000	3	3	6	2,500		
5,000,000	5	250	20,000,000	3	5	10	4,100		

Total (CY) of Sediment Plus Water Volume Placed into Temporary Holding Cells During One Year	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft or 1 yd depth	Acreage needed for 6 drying Cells which are used 2 times per year for temporary placement		Dike Length in Feet for 6 cells	cells at 5 ft elevation	Dewatered Volume of Material (1.5 times original amount dredged)
4,000,000	800	420	70	33,200	140,000	1,500,000
12,000,000	2,500	1,250	210	99,600	420,000	4,500,000
20,000,000	4,100	2,080	350	166,000	700,000	7,500,000

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	
Pump	1	2	3	4	5	6	
Dry	2,3,4,5	3,4,5,6	4,5,6,7	6,7,8,9	7,8,9,10	8,9,10,11	Cycle 1
Remove	6	7	8	9	10	11	
Pump	7	8	9	10	11	12	
Dry	8,9,10,11	9,10,11,12	10,11,12,1	11,12,1,2,	12,1,2,3	1,2,3,4	Cycle 2
Remove	12	1	2	3	4	5	

Volume of Material fo Permanent placement Stancil Quarry After Drying (CY)	at Volume of Dried Material	Area of one Drying Cell (acres)	~ Total Number of Truck	Number of Transfer sites at 6 trucks per hour over 10 hours per transfer site	Dredged per year that Mason Dixon Quarry can	# of dredging cycles that facility could be used till capacity is reached
1,500,000	130,000	70	125000	9.0	Unknown	23
4,500,000	380,000	210	375000	25.0	Unknown	8
7,500,000	630,000	350	625000	42.0	Unknown	5

3D - Upland Placement

Mason Dixon Belvidere Quarry Upland Placement - Hydraulic Dredge

Logistics and Assumptions to Remove: 1 Million CY, 3 Million CY, and 5 Million CY of Sediment from Conowingo Reservoir SCENARIO

Hydraulic dredges will be used to remove sediment from the Conowingo Reservoir, then using a pipeline from the dredge the removed sediment will be pumped downstream directly to the Mason Dixon (Belvidere Plant) Quarry in Cecil County Md., where it can be dewatered and permanently placed at the site.

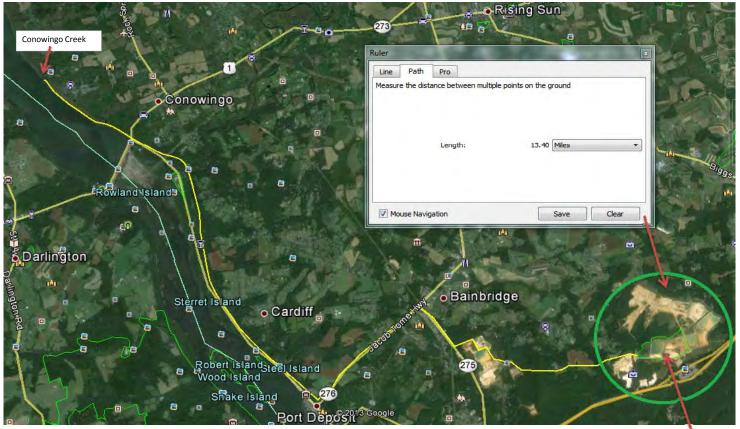
ASSUMPTIONS/BASIS FOR ESTIMATE: 1) Assume 1 cy of sediment contains 0.81 tons of solids.

2) An initial estimate and sizing of a dredge for Conowingo reservoir placement indicated that a dredge such as the Jet Dragon 870 should be suitable for dredging the Conowingo Reservoir at 400 CY / hr. A Jet Dragon 870 Dredge costs 1.5 million. (Based on discussion and materials from Ellicott Dredging Company who have dredges such as the dragon cutter head line which can dredge from 100 to 1000 CY/hr)

3) This estimate will be based on the assumption that there are 250 work days per year and up to 10 work hours days.

4) Approximately 13 boosters per pipe at \$300,000 per booster will be needed to get hydraulically dredged material to Mason Dixon Belvidere Quarry. The dredge will push the sediment for the first mile then booster pumps are needed every mile thereafter.

5) Dredged material would first be removed from the reservoir via hydraulic dredging and pumped over 13 miles to a holding area at Mason Dixon Belvidere Quarry where it can be dewatered to <u>the</u> <u>Susquehanna River or to the Susquehanna flats approximately 5 miles away</u>. Once the material is dewatered it can be placed permanently in final fill areas at the quarry. <u>The dewatering site will be</u> <u>a number of acres surrounded by a sediment holding dike which will contain the dredged material while it is dewatered by working and trenching the material with buildozers. Drying the material will take approximately 4 months per cell.</u>


6) Where needed the pipeline can be constructed along roads, rail lines and thru areas of farm land or forest.

7) Initially the dredges will pump sediment under the train trestle on Old Conowingo Creek in order to cross under the rail lines, and move the material in the pipeline from water to land.

8) Cells will be set up to dewater the sediment at the Quarry and Effluent will be pumped back to the Susquehanna River or the Susquehanna Flats area 5 miles away. After the sediment is dewatered the material will then be pushed and moved via bulldozer and excavator to a final fill location within the Quarry.

9) Equipment needed: Dredge's, Pipe, Booster Pumps, Excavators, Bulldozers (to trench and move material for drying).

Location of Proposed Pipeline and Mason Dixon Belvidere Quarry in Cecil County Md.

Belvidere Quarry

Evaluation of Available Capacity:								
Total Amount of Material to be dredged (CY)	Number of Dredges at (400 CY/hr solids at 10 hour days or 4000 CY/day or 1000000 CY/yr.) per Dredge		Actual CY of Sediment Plus Water Volume Hydraulically Dredged	Distance to be Piped (miles)	Number of Pipes	Number of Booster pumps	Equivalent Acreage of Hydraulically Dredged Material @ 3 ft. or 1 yd. depth	
1,000,000	1	250	4,000,000	<u>14</u>	1	<u>13</u>	800	
3,000,000	3	250	12,000,000	<u>14</u>	3	<u>39</u>	2,500	
5,000,000	5	250	20,000,000	<u>14</u>	5	<u>65</u>	4,100	

	Plus Water Volume	Equivalent Acreage of Hydraulically Dredged	drving Colls which are	Area of one Drying <u>Cell (acres)</u>	<u>Dike Length in Feet for</u> <u>6 cells</u>	Dike Volume in CY for 6 cells at 5 ft. elevation	<u>Dewatered Volume of</u> <u>Material (1.5 times</u> <u>original amount</u> <u>dredged)</u>	<u>Distance to Pipe</u> <u>Effluent from</u> <u>Dewatering Operation</u> (miles) using 2 pumps
ſ	4,000,000	<u>800</u>	<u>420</u>	<u>70</u>	33,200	<u>140,000</u>	<u>1,500,000</u>	<u>5</u>
ľ	12,000,000	2,500	<u>1,250</u>	<u>210</u>	<u>99,600</u>	420,000	4,500,000	<u>5</u>
Ī	20,000,000	<u>4,100</u>	2,080	<u>350</u>	166,000	700,000	7,500,000	5

	<u>Cell 1</u>	<u>Cell 2</u>	<u>Cell 3</u>	<u>Cell 4</u>	<u>Cell 5</u>	<u>Cell 6</u>	
<u>Pump</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	
Dry	<u>2,3,4,5</u>	<u>3,4,5,6</u>	<u>4,5,6,7</u>	<u>6,7,8,9</u>	<u>7,8,9,10</u>	<u>8,9,10,11</u>	Cycle 1
Remove	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	
<u>Pump</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	
<u>Dry</u>	<u>8,9,10,11</u>	<u>9,10,11,12</u>	<u>10,11,12,1</u>	<u>11,12,1,2,</u>	<u>12,1,2,3</u>	<u>1,2,3,4</u>	Cycle 2
<u>Remove</u>	<u>12</u>	<u>1</u>	<u>2</u>	<u>3</u>	4	<u>5</u>	

Volume of Material for Permanent placement at Mason Dixon Belvidere Quarry After Drying (CY)	Material per Drying	<u>Area of one Drying</u> <u>Cell (acres)</u>	Percentage of Material Dredged per year that Mason Dixon Belvidere Quarry can Handle per year (%)	# of dredging cycles that facility could be used before capacity is reached
1,500,000	<u>130,000</u>	<u>70</u>	Unknown	23
4,500,000	380,000	<u>210</u>	Unknown	8
7,500,000	<u>630,000</u>	<u>350</u>	Unknown	5

4 - Watershed Management Strategy Implement "E3" Scenario

Logistics and Assumptions to Reduce Sediment Yield: 243,000 CY from Conowingo Reservoir SCENARIO DESCRIPTION

Total maximum daily loads (TMDLs) have been established for nutrients (phosphorus and nitrogen), which will be met through watershed implementation plans (WIPs). After meeting the nutrient TMDLs there will still be available sediment reduction by implementing the "E3" scenario (everyone doing everything technically feasible everywhere in the watershed) beyond the WIPs.

ASSUMPTIONS/BASIS FOR ESTIMATE:

1) Assume 1 CY of sediment contains 0.81 tons of solids.

2) Model runs that were used to develop the "E3" scenario will result in the sediment reductions described in the scenario.

3) The unit costs to implement the "E3" scenario will not change greatly over time.

4) Jurisdictions will be able to secure adequate funding and political support. Description of POTENTIAL SITE/Locations/Include PHOTOS, FIGURE, MAP

Best management practices will be implemented in the Susquehanna River watershed in areas of New York, Pennsylvania, and Maryland above Conowingo Dam.

Description of POTENTIAL BMPs PHOTOS, FIGURE

Two examples of best management practices that could be implemented in urban areas are pervious pavers and rain gardens, which allow overland flow generated during storms to slowly infiltrate. This will reduce runoff and erosion and help to reduce sediment loads.

Two examples of agriculture best management practices are cover crops and covered manure sheds. Cover crops help to reduce erosion and sediment loads and manure sheds reduce nutrient inputs to local water systems and ultimately the Bay.

