Water Chemistry Sampling at Trust Fund Sites

Tom Jones
Versar, Inc.
May 20, 2014
Standard Monitoring Requirements

- Water chemistry data collection protocols
 - Representative and comparable samples
- Required parameters for analysis
 - Trust Fund project data are comparable
- Minimum detection limits
 - Changes in concentration data can be distinguished
 - Assure that detection limits are lower than reference values for MD streams
Standard Collection Protocols

- Sampling of rising, peak, and falling limbs
 - All parts of storm sampled
 - Water chemistry changes over the course of a storm
 - More data are better
 - Calculation of load is more accurate when all parts of storm represented

<table>
<thead>
<tr>
<th>Limb</th>
<th>Discharge Volume (CF)</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TKN</td>
</tr>
<tr>
<td>Rising</td>
<td>57,330</td>
<td>0.7</td>
</tr>
<tr>
<td>Peak</td>
<td>151,311</td>
<td>0.8</td>
</tr>
<tr>
<td>Falling</td>
<td>87,353</td>
<td>< 0.5</td>
</tr>
</tbody>
</table>
Storm Hydrograph

Example Hydrograph

- Rising
- Peak
- Falling

Stage (ft) vs Date/Time
Trust Fund Standard Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Target MDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Nitrogen</td>
<td>mg/L</td>
<td>0.034</td>
</tr>
<tr>
<td>Ammonia as N</td>
<td>mg/L</td>
<td>0.0016</td>
</tr>
<tr>
<td>Nitrite-N</td>
<td>mg/L</td>
<td>0.002</td>
</tr>
<tr>
<td>Nitrite & Nitrate-N</td>
<td>mg/L</td>
<td>0.003</td>
</tr>
<tr>
<td>Particulate Nitrogen as N</td>
<td>mg/L</td>
<td>0.003</td>
</tr>
<tr>
<td>Phosphate (PO₄)</td>
<td>mg/L</td>
<td>0.002</td>
</tr>
<tr>
<td>Total Dissolved Phosphorus</td>
<td>mg/L</td>
<td>0.006</td>
</tr>
<tr>
<td>Particulate Phosphorus as P</td>
<td>mg/L</td>
<td>0.0003</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td>0.8</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>1</td>
</tr>
</tbody>
</table>
Eligible Storm Criteria

- 48 hours of antecedent dry time (< 0.05” of rain)
- > 0.1 inches of rain in 24 hours
How to Sample?

- **Portable automated sampler**
 - increases flexibility for capturing storms
 - sample more of the storm
 - up-front equipment cost
 - risk of equipment failure or programming error
 - post storm processing

- **Manual (grab) sampling**
 - low equipment cost
 - need to staff station for storm entirety
 - sample less of the storm
 - sample and done
Storm Hydrograph

Example Hydrograph

- **Stage (ft)**
 - 0.2
 - 0.4
 - 0.6
 - 0.8
 - 1.0
 - 1.2

- **Date/Time**
 - 4/22/2012 4:48
 - 4/22/2012 9:36
 - 4/22/2012 14:24
 - 4/22/2012 19:12
 - 4/23/2012 0:00
 - 4/23/2012 4:48
 - 4/23/2012 9:36

- **Key Points**
 - Rising
 - Peak
 - Falling
Storm Hydrograph

Automated Sampling ~ 1-hour interval
Storm Hydrograph

Automated Sampling ~ 30-minute interval (better)
Storm Monitoring 101

- Supplies list

<table>
<thead>
<tr>
<th></th>
<th>manual</th>
<th>auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>project field notebook</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>flow loggers</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>bags of ice</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>chain of custody forms</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>sample bottles</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>automated samplers</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>roll of suction tubing</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>spare bubbler line</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>sampler batteries</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>1-liter sampler bottles</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>sampler bottle caps</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>cable ties</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>spare strainers</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>
Storm Monitoring 101

- Deployment Procedure
 - Consult analytical lab for pickup schedule
 - Consult meteorological services
 - Use time-paced autosampler program*
 - Allow sufficient time for falling limb*
 - Check sampler battery charge*
 - Ice in sampler*
 - Connect suction tubing and level sensor*

* (automated)
Storm Monitoring 101

- Retrieval Procedure
 - Check to be sure minimum rainfall criterion is satisfied
 - Check for filling of bottles
 - Use spreadsheet or proprietary software to examine hydrograph
 - Select discrete samples to represent rising, peak, and falling limbs of hydrograph
 - Composite discrete samples
 - Measure pH of composites
 - Filter sample as necessary
 - Submit samples to laboratory

* (automated)
Sample Handling and Preservation

- Stock sampler with ice
- Keep samples refrigerated or on ice
- Transfer samples to the laboratory within 24 hours of sampling cessation (falling limb captured)
- Chain of custody
Equipment Maintenance

- Check:
 - Tightness of connections (suction tubing to anchor point)
 - Suction and pump tubing integrity (holes? splits?)
 - Distributor arm (firmly attached, pump tubing not wobbly)
 - Accurate level measurement on logger
 - Volume delivery calibration
Quality Control Samples

- Make up 20% of samples submitted to laboratory

<table>
<thead>
<tr>
<th>Flow Type</th>
<th>Blank</th>
<th>Duplicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseflow, all stations</td>
<td>Distilled water</td>
<td>Duplicate sample</td>
</tr>
<tr>
<td>Stormflow, all stations</td>
<td>Distilled water run through automated sampler tubing using sampler pump</td>
<td>Not applicable*</td>
</tr>
</tbody>
</table>
Baseflow Monitoring Guidance

- 72 hours of antecedent dry time (< 0.05” of rain)
- Fixed sampling schedule
 - first week of the quarter
 - second week of the second month of the quarter
- Measure instream water quality parameters
 - temperature
 - pH
 - specific conductivity
 - dissolved oxygen
- Collect grab sample
Questions and Comments