Chesapeake and Atlantic Coastal Bays Critical Area Training:

Stormwater Management

May 12, 2022 Critical Area Staff

Overview

• <u>Session 1</u>: Intro to Critical Area stormwater management

- Current requirements: Maryland Department of the Environment (MDE) Environmental Site Design (ESD)
- CAC 10% pollutant reduction requirement

• <u>Session 2</u>: Critical Area Stormwater Guidance Manual

- Common BMPs: submerged gravel wetlands, micro-bioretention, infiltration, sheet flow
- Critical Area Stormwater Review Cheat Sheet
- Planting for small projects
- ~Break~
- <u>Session 3</u>: Demos
 - Soil Information: Web Soil Survey
 - Review sample site plan

Session 1: SWM Intro

Maryland Department of the Environment (MDE): <u>Environmental Site Design to the</u> <u>Maximum Extent Practicable</u> <u>(ESD to the MEP)</u>

10% Phosphorus Removal In the Critical Area

Why Require Additional Analysis in the Critical Area?

- Stormwater is the fastest growing nutrient source in the Bay watershed.
- The last 1,000 feet does matter!

What is the 10% Rule?

- Requires post-development water quality to be 10% better than it was prior to development or redevelopment
- Quantified as a 10% reduction in Phosphorus
- Separate requirement from MDE ESD
- Required for projects with 250 square feet or more of disturbance
 - Private re/development projects: IDA only
 - State re/development projects: All designations

Evolution of the 10% Rule

- 1986 Included in Critical Area Criteria
- 1987 First 10% Guidance Issued by MWCOG
- 1993 Second 10% Guidance released
- 2000 MDE Stormwater Manual issued
- 2003 Third 10% Guidance issued
- 2007 Passage of the Maryland Stormwater Act
- 2008 Passage of HB 1253 (Critical Area)
- 2009 Updated MDE Stormwater Manual
- 2011 ESD in the Critical Area Manual

CAC and MDE Interface

- 1) CAC 10% Rule includes development less than 5,000 sf.
- 2) Design BMP to meet MDE requirements.
- 3) Does the BMP meet the 10% phosphorus load reduction?
 - a) If load removed is <u>></u> the pollutant removal requirement, then the onsite BMP meets the 10% Rule.
 - b) If the BMP design does not meet the 10% Rule then:
 - i) Evaluate alternative BMP designs;
 - ii) Add additional BMPs;
 - iii) Reevaluate project design so more of the site is treated by BMPs;
 - iv) Design BMP to treat run-off from an offsite area; or
 - v) If onsite/offsite BMPs are infeasible/insufficient then use offsets.

Redevelopment Standard

• MDE's redevelopment requirement:

- Reduce existing impervious by 50%
 - Impervious Area Requiring Treatment (IART)

• CAC's redevelopment requirement:

- Reduce pre-development phosphorus load by 50%
 - Automatically calculated in 10% spreadsheet

How the Spreadsheet Works

- Blue cells = Inputs
- Gray cells = Formulas (DO NOT TOUCH)
- Summary Tab for Quick Check
- Individual tabs for each BMP

Fee Schedule and Offset Policy

• Fee-in-Lieu: Minimum Rate of \$35,000/lb

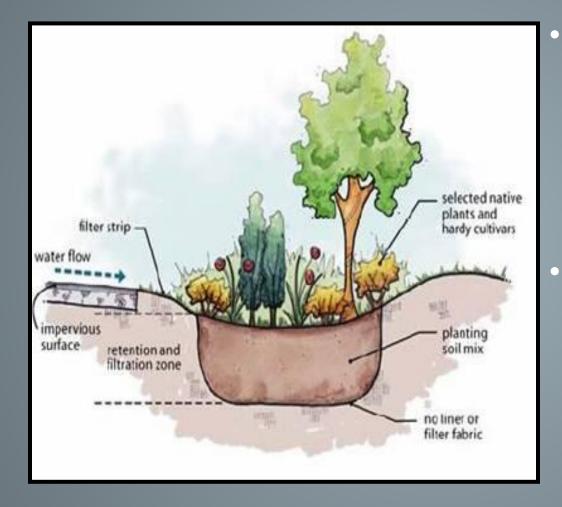
- Local jurisdiction must have program set up to manage, track and implement FIL.
- SWM FIL account must be separate from other FIL accounts.

 Guidance for planting offsets is in the IDA 10% SWM Manual

Thank you! Questions? (Next up: Session 2 - Critical Area Stormwater Guidance Manual)

Session 2: Critical Area Stormwater Guidance Manual

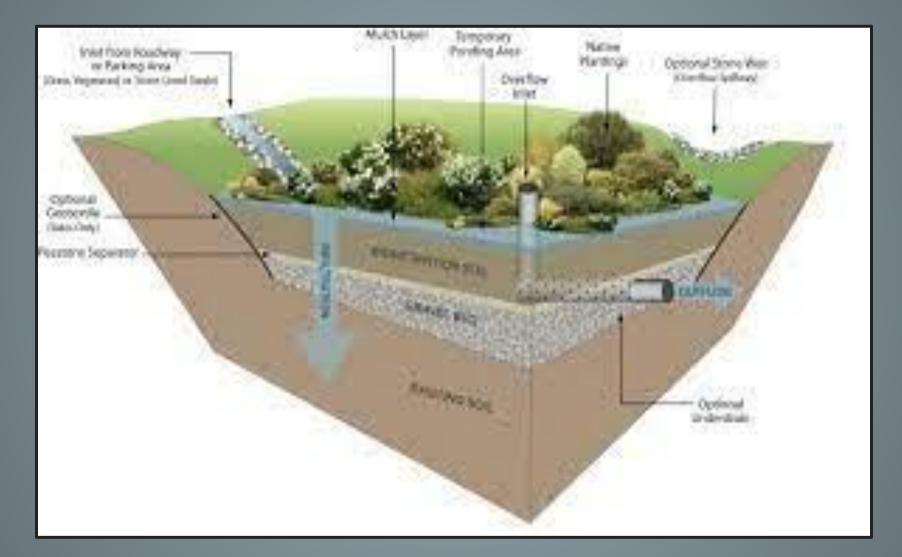
CAC SW Guidance Manual: Consistency with MDE Guidance

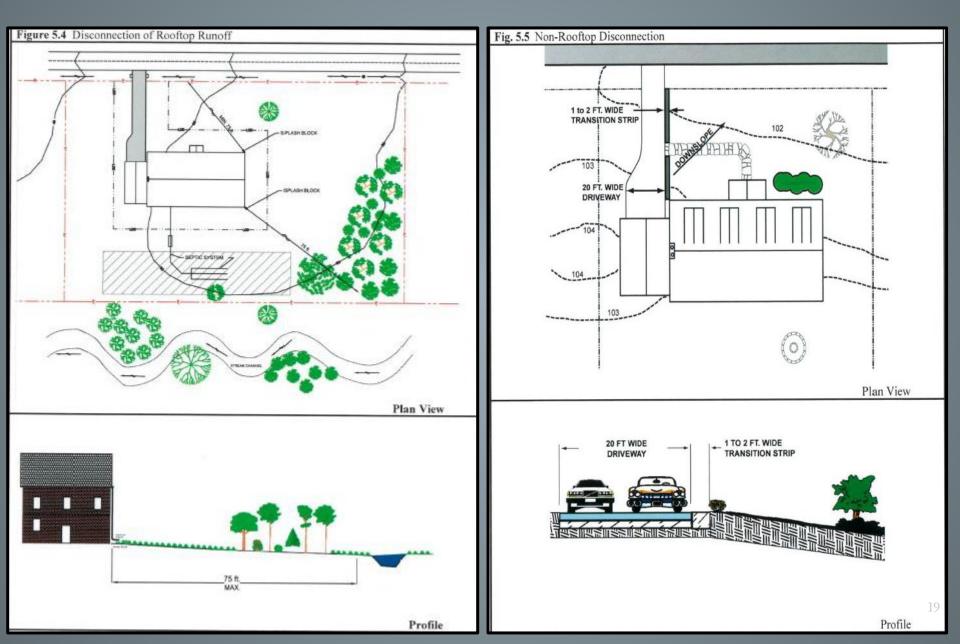

- The <u>CAC Stormwater Guidance Manual</u> conforms to the state-wide methods and equations prescribed for ESD to the MEP compliance (MDE, 2009)
- Same nomenclature and practice names as outlined in the state-wide manual
- Provides phosphorus removal rates for the list of ESD practices (see Appendix A)
- Provides Level 1 and 2 phosphorus removal rates for a few structural practices

Level 1 and 2 Designs

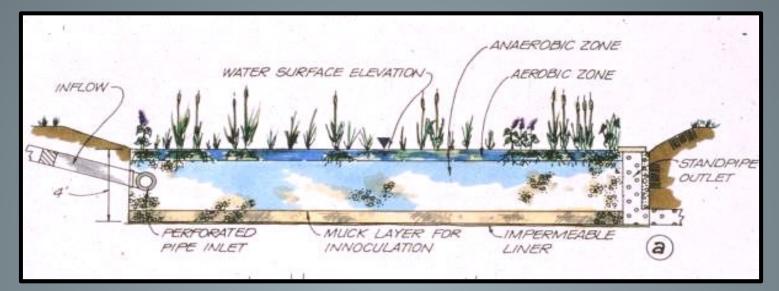
 "Design level" approach for estimating the phosphorus removal capability of certain stormwater practices

 A practice designed to Level 1 achieves a lower phosphorus removal rate than the more stringent Level 2 designs


Level 1 and 2 Designs

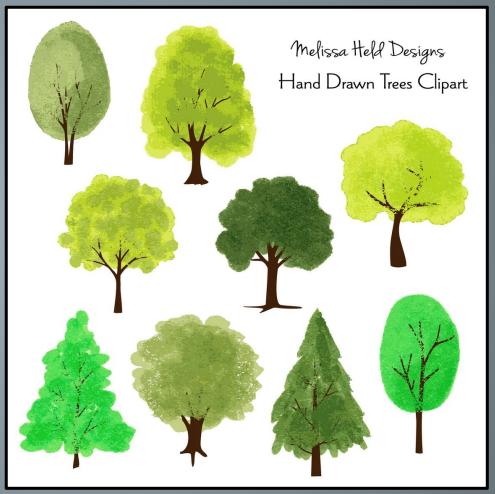

 Level 1 design equates to MDE's minimum design criteria for ESD practices

 Level 2 design includes an enhanced list of design features known to maximize phosphorus removal


SWM "Cheat Sheet"

Rooftop and Non-Rooftop Disconnect

Submerged Gravel Wetland


Stormwater in the Critical Area Buffer Zone

In general: SWM not permitted in the Buffer
 o exception- BMA and setbacks

- SWM Pipes and outfalls
- Buffer <u>cannot</u> be used for disconnection purposes (rooftop, non-rooftop, or sheet flow to conservation areas)
 o exception minimum distance
- Regenerative conveyance wetlands (also known as Coastal Plain Outfalls)

Planting to Meet 10%

- 1 acre of native trees = 400 ³/₄-inch caliper trees = 2.5 lbs of phosphorus removed; or
- 100 square feet of permanent disturbance can be offset by planting one ³/4-inch caliper native tree
- only applicable for small residential projects; (2,000 s.f. disturbance)
- EX: 10% requirement = 0.35 lbs/P per year = 56 native trees
 - multiply 10% requirement by 400, then divide by 2.5
 = # trees required

Break Time! (Next up: Session 3 - Demos)

Session 3:

Demonstrations - Soil Type & 10% Worksheet

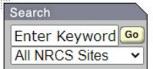
Hydrologic Soil Groups (HSGs)

Soil properties, including the HSG, governwhich SWM practices are feasible at a given site
The HSG also influences the phosphorus removal rate SWM BMPs can achieve

Hydrologic Soil Groups

Group A is sand, loamy sand or sandy loam types of soils. It has low runoff potential and high infiltration rates even when thoroughly wetted.

Group B is silt loam or loam. It has a moderate infiltration rate when thoroughly wetted


Group C soils are sandy clay loam. They have low infiltration rates when thoroughly wetted

Group D soils are clay loam, silty clay loam, sandy clay, silty clay or clay. This HSG has the highest runoff potential. They have very low infiltration rates when thoroughly wetted

How to Determine Soil Type

You are here: Web Soil Survey Home

Browse by Subject

Soils Home

Cooperative Soil

Archived Soil

Status Maps

Official Soil Series

Descriptions (OSD)

Geospatial Data

Series Extent

Survey (NCSS)

National

Surveys

Explorer

The simple yet powerful way to access and use soil data.

Welcome to Web Soil Survey (WSS)

Web Soil Survey (WSS) provides soil data and information produced by the National Cooperative Soil Survey. It is operated by the USDA Natural Resources Conservation Service

(NRCS) and provides access to the largest natural resource information system in the world. NRCS has soil maps and data available online for more than 95 percent of the nation's counties and anticipates having 100 percent in the near future. The site is updated and maintained online as the single authoritative source of soil survey information.

START WSS

Home

I Want To...

About Soils

o Start Web Soil Survey (WSS)

Help

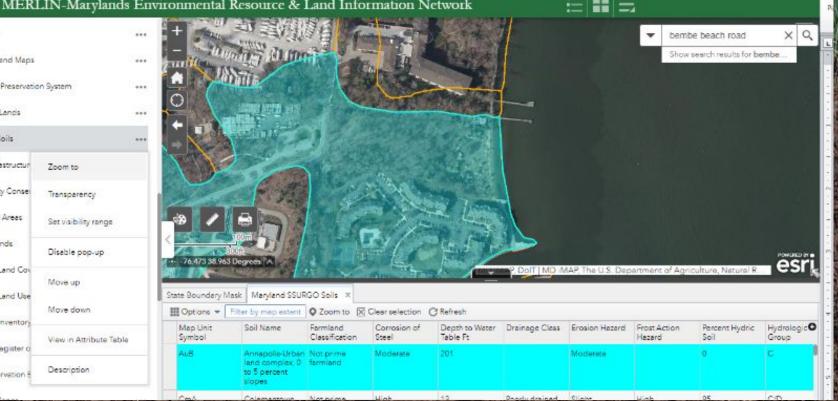
- Know Web Soil Survey
- Know Web Soil Survey operation hours
- Find what areas of the U.S. have soil data
- Find information by topic
- Know how to hyperlink from other documents
- Know the SSURGO data structure
- Use Web Soil

- Requirements

Contact U

- to Web Soil Survey

to Determin le Soi


information

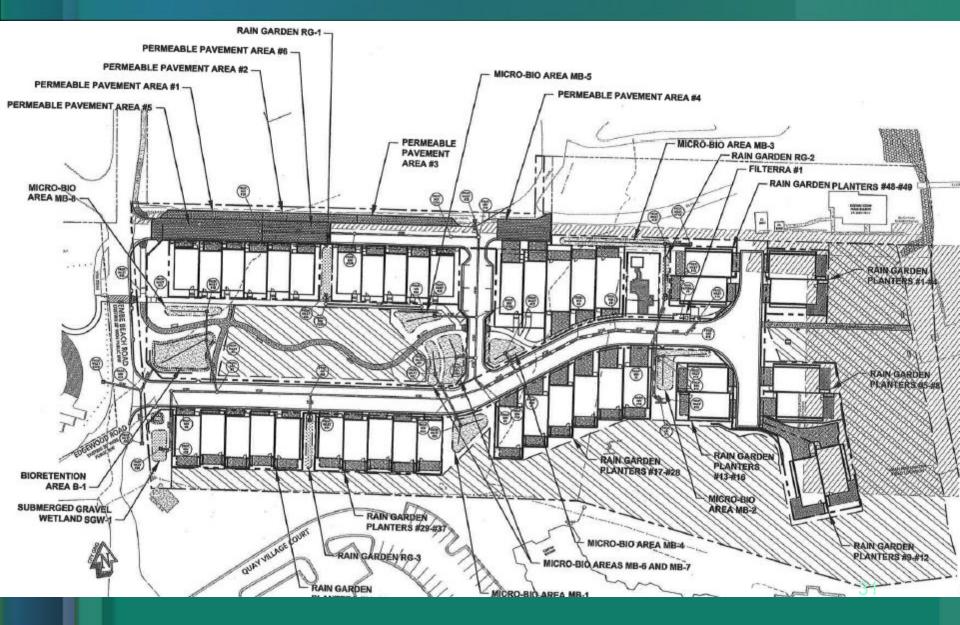
Network

anc

Kesoliirce

+ 🔄 Wetlanda	
> 🔄 1972 Wetland Maps	
• 🔄 Wildlends Preservetio	n System ++
Protected Lands	
+ 🛃 SSURGO Soils	
) 🗌 Green Infrastructur	Zoom to
• 📄 Biodiversity Consei	Transparency
DNR Focal Areas	Set visibility range
> 🗌 Federal Lands	Disable pop-up
▶ Land Use Land Cov	Move up
• 🔄 Historical Land Use	
Maryland Inventory	Move down
• 🔄 National Register o	View in Attribute Table
MHT Preservetion 6	Description
1.54-2010 DO 45	

Soil Type and SWM BMPs



10% Spreadsheet Demo

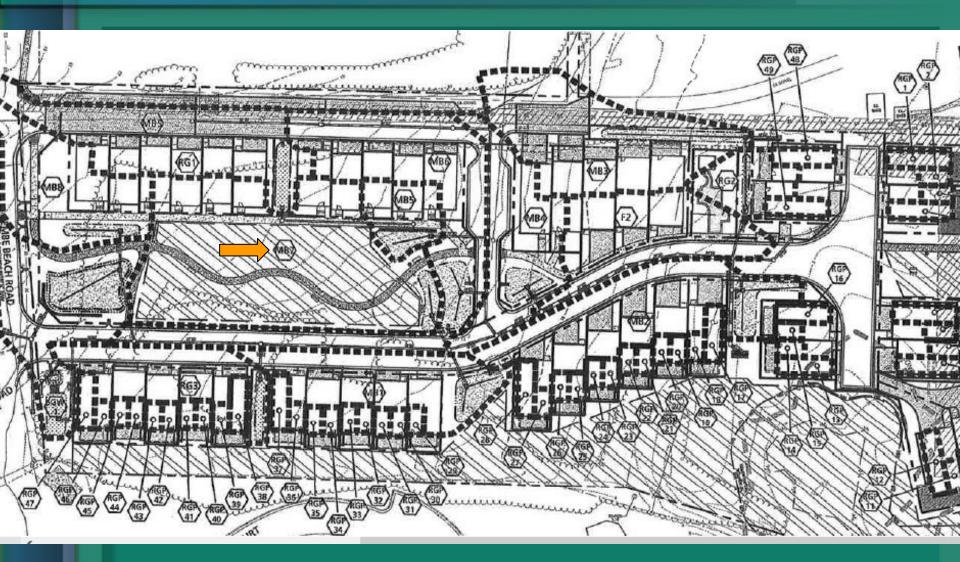
Bembe Beach Example

- Site Area: 5.28 acres
- Existing Impervious: 0.28 acres (to remain)
- New Impervious: 1.84 acres
- Soil Type: entirely C

Overall Site & SWM Plan Site Plan Sheet 1 of 10



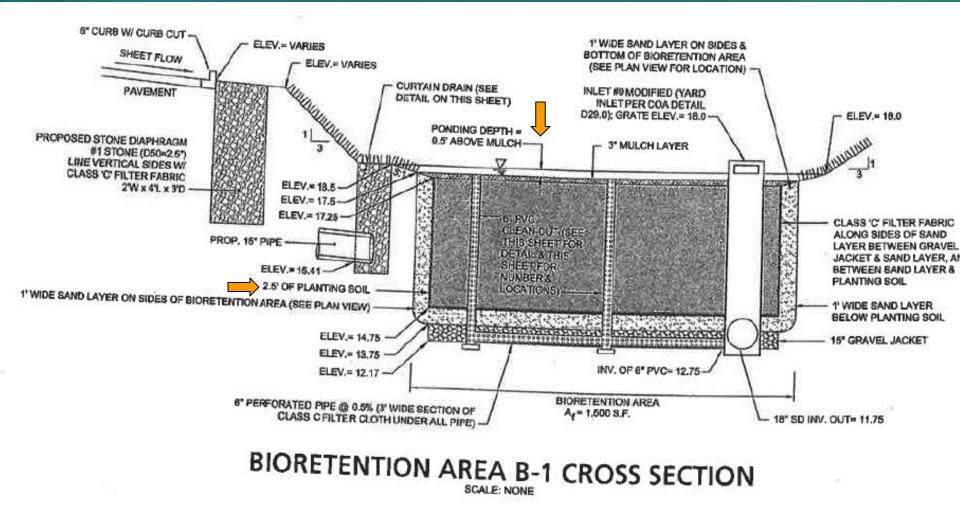
- 24	A	В	С	D	
12	Step 1: Complete ESD Implementation Checklist				1
13		A REAL PROPERTY AND A			
14	Check all of the Following ESD Practices That Were Implemented at Site			Yes - No - N/A	
15	Environmental Mapping Was Conducted at Site Prior to Layout				
16	6 Natural Areas Were Conserved (e.g., forests, wetlands, steep slopes, floodplains)				
17	7 Stream, Wetland and Shoreline Buffers Were Reserved				
18	B Disturbance of Permeable Soils Was Minimized				
19	Natural Flow Paths Were Maintained Across the Site				
20	8 Building Layout Was Fingerprinted to Reduce Clearing and Grading at Site				
21	1 Site Grading Promoted Sheetflow From Impervious Areas to Pervious Ones				
22	2 Site Design Was Evaluated to Reduce Creation of Needless Impervious Cover				
23	3 Site Design Was Evaluated to Maximize Disconnection of Impervious Cover				
	Site Design Was Evaluated to Identify Potential Hotspot Generating Area for Stormwater				
24	1 Treatment				_
	Erosion and Sediment Control Practices and Post Construction Stormwater				
	Management Practices Were Integrated into a Comprehensive Plan				
26	Tree PlantingWas Used at the Site to Convert T	urf Areas into Forest			
27					


	A	В	C	D	E		
27	AND CONTRACTOR CONTRACTOR OF A DESCRIPTION OF A DESCRIPTI			1			
28	Step 2: Calculate Site Imperviousness and Water Quality Volume, WQv (for redevelopment)						
29							
30	Site Area, A (acres)	5.28	site area,	or LOD			
31	Existing Impervious Surface Area (acres)	0.28					
32	Proposed Impervious Surface Area (acres)	2.12	📃 🦛 total impe	ervious (existing to			
33	Rainfall Depth, P (in)	1.0	remain +	proposed)			
34							
35	Existing Imperviousness, Ipre	5.3%					
and the second second	Proposed Imperviousness, Ipost	40.2%					
37							
38	Water Quality Calculation for Redevelopment On						
	Required Treatment Area (acres)	0.00					
	Runoff Coefficient, Rv	0.95					
41	states and the second second second second second						
42	Water Quality Volume, WQv (cf)	0					
43	Service and the service se						
44	Step 4: Calculate Environmental Site	Design (ESD) Rainfall Target,	PE			
45							
46	Development Category (for ESD)	New D	evelopment				
47							
48	% Soil Type A	0%					
49	% Soil Type B	0%					
50	% Soil Type C	100%	_				
51	% Soil Type D	0%					
52					33		

104	H I	J	К	L	М	N
26	A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY.					
27	Step 3: Calculate Phosphor	ous Removal R	equireme	ent, RR for C	ritical Area S	ites
28						
29			New Development			
30						
31	New Development					
32	Average Annual Predevelopment Loa	d, Lpre (lbs P / yr)		2.64		
33						
34	Redevelopment:					
35	5 Predevelopment Runoff Coefficient, Rvpre			0.10		
36	6 Phosphorous Mean Concentration, C (mg/L)			0.3		
37	Average Annual Predevelopment Load, Lpre (Ibs P / yr)			1.26		
38						
39	Post-Development Runoff Coefficient			0.41		
40	0 Average Annual Post-Development Load, Lpost (Ibs P / yr)			5.32		
41	and the second	1				
42	Removal Requirement, RR (Ibs P	/ yr)		2.94		
43						

Overall Site & SWM Plan Site Plan Sheet 1 of 10

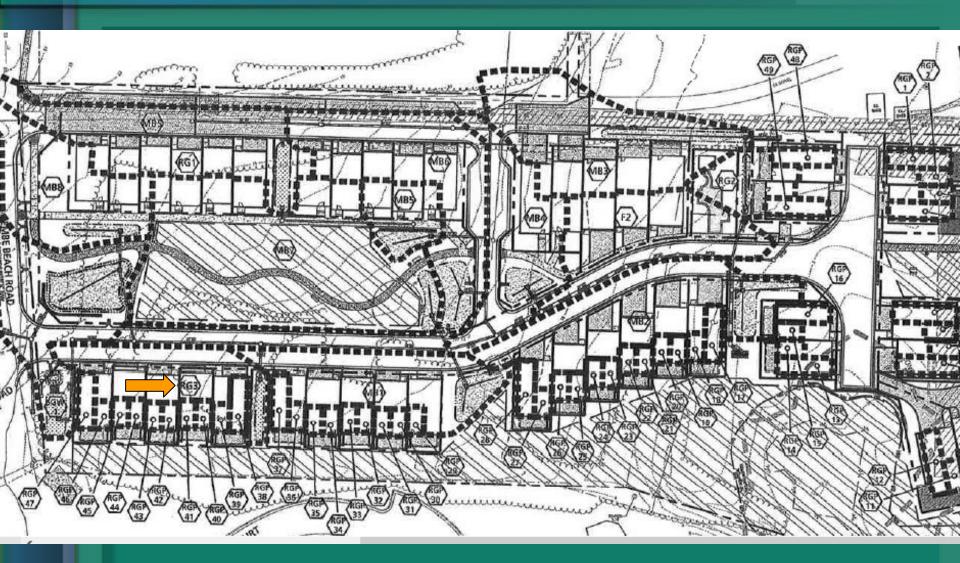
SWM Practices - Drainage Areas


Site Plan36Sheet 2 of 10

SWM Practices - Drainage Areas

MICRO-SCALE PRACTICES

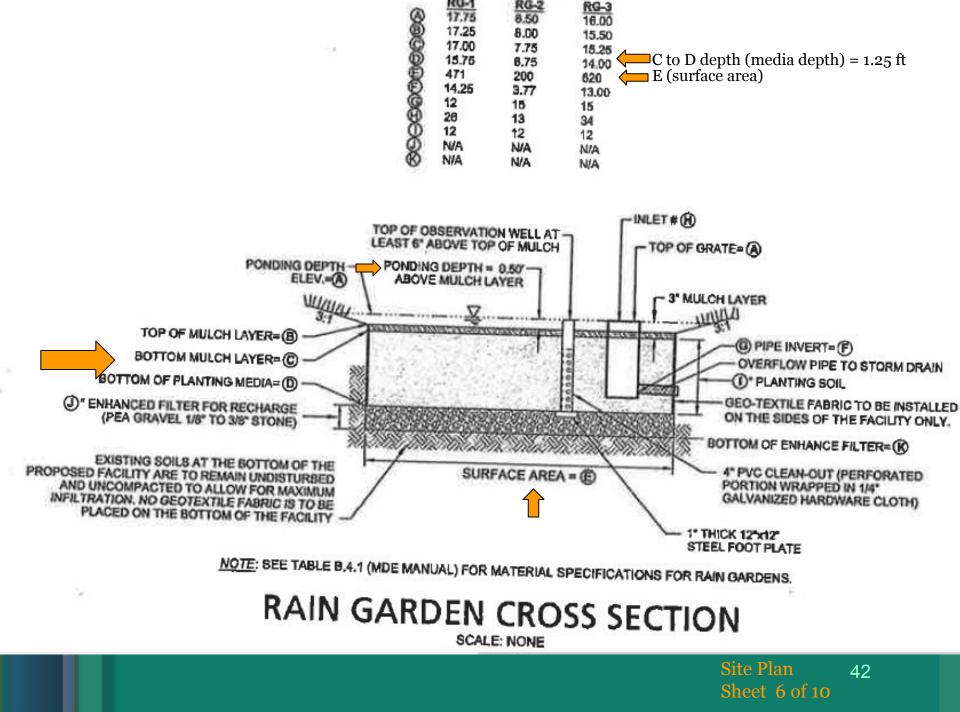
Site Plan Sheet 2 of 10


DA	PRACTICE	DRAINAGE AREA - SQ. FT.	HAPERVIOUS AREA - SQ. FT.		
M81	MICRO-BIORETENTION AREA (M-6)	8,715	5,031		
MB2	MICRO-BIORETENTION AREA (M-6)	9,736	6,975		
MB3	MICRO-BIORETENTION AREA (M-6)	10,453	4,006		
M84	MICRO-BIORETENTION AREA (M-8)	7,243	4,642		
MBS	MICRO-BIORETENTION AREA (M-8)	12,084	9,338		
MB6	MICRO-BIORETENTION AREA (M-8)	13,181	10,369		
MB7	MICRO-BIORETENTION AREA (M-6)	18,249	3,561		
MB9	MICRO-BIORETENTION AREA (M-6)	7,417	3,684		
SGW1	SUBMERGED GRAVEL WETLANDS (M-2)	2,840	1,396		
RG1	RAIN GARDEN (M-7)	9,529	7,885		
RG2	RAIN GARDEN (M-7)	2,617	1,408		
RG3	RAIN GARDEN (M-7)	6,411	4,285		
F1	FILTERRA	7,323	6,169		
RGP1-49*	RAIN GARDEN PLANTERS	16,257 -	18,257		

Site Plan 38 Sheet 5 of 10

В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S
P _E Credit Description		Contributin g Drainage Area (sf)	% Impervio us Cover	ESDv Received by	ESDv from Up- Gradient Practices	P	ctice Specific arameter(s)		WQv or ESDv credit (cf)	Runoff Volume Remaini ng (cf)	Down- Gradient Practice		Phospho rous Removal Efficiency	Removal Efficiency	P Load to Practice (Ibs/yr)	Load Reductio n (Ibs/yr)	Ren ng l (Ib:
ESDv credit is based on de storage volume	sign	6,717	70%	1,025	1179	740	Ponding Depth (ft) 0.5	Media Depth (ft 2.3) 1,051	1,153			50%	66%	0.26	0.17	0
ESDv credit is based on de storage volume	sign	9,583	80%	1,660	0	763	Ponding Depth (ft) 0.5	Media Depth (ft 2.25) 1,068	592			50%	59%	0.41	0.24	0
ESDv credit is based on de storage volume	sign	10,625	53%	1,260	0	739	Ponding Depth (ft) 0.5	Media Depth (ft 2.25) 1,035	225			50%	62%	0.31	0.20	0
ESDv credit is <mark>b</mark> ased on de storage volume	sign	7,243	62%	991	0	535	Ponding Depth (ft) 0.5	Media Depth (ft <u>3.5</u>) 991	0			50%	66%	0.25	0.16	0
ESDv credit is based on de storage volume	sign	12,956	77%	2,166	0	Surface Area (sf) 497	Ponding Depth (ft) 0.5	Media Depth (ft 4) 1,044	1,122			50%	54%	0.54	0.29	0.
ESDv credit is based on de storage volume	sign	13,372	84%	2,425	0	884	Ponding Depth (ft) 0.5	Media Depth (ft 4	1,856	569			50%	61%	0.61	0.37	0.
ESDv credit is based on de storage volume		19,463	16%	865	0	Surface Area (sf) 420	Ponding Depth (ft) 0.5	Media Depth (ft 4) 865	0			50%	66%	0.22	0.14	0.
ESDv credit is based on de storage volume	sign	7,417	50%	834	0	Surface Area (sf) 435	Ponding Depth (ft) 0.5	Media Depth (ft 3.7) 834	0			50%	66%	0.21	0.14	0.
ESDv credit is based on de storage volume	sign	6,996	75%	1,141	0	Surface Area (sf) 119	Ponding Depth (ft) 0.5	Media Depth (ft 1.75) 143	998			50%	33%	0.29	0.09	0.
		94,372		12,368	1,179				8,887	4,660	x		50%	59%	3.09	1.81	1.
Site Design	Calcu	lation Sumn	nany i	Nonroofto	n Discon	nect (C D)	Permeable P	avers (C)	licrobiore	tention(C	D)	ubmerger	d gravel we	atlands	Rain Gar	den C D	ľ

SWM Practices - Drainage Areas


Site Plan40Sheet 2 of 10

SWM Practices - Drainage Areas

MICRO-SCALE PRACTICES

Site Plan Sheet 2 of 10

DA	PRACTICE	DRAINAGE AREA - SQ. FT.	IMPERVIOUS AREA - SQ. FT.		
M31	MICRO-BIORETENTION AREA (M-6)	8,715	5,031		
MB2	MICRO-BIORETENTION AREA (M-6)	9,736	6,975		
MB3	MICRO-BIORETENTION AREA (M-6)	10,453	4,006		
M84	MICRO-BIORETENTION AREA (M-8)	7,243	4,642		
MBS	MICRO-SIORETENTION AREA (M-8)	12,084	9,338		
MB6	MICRO-BIORETENTION AREA (M-8)	13,181	10,969		
MB7	MICRO-BIORETENTION AREA (M-6)	19,249	3,561		
MB9	MICRO-BIORETENTION AREA (M-6)	7,417	3,684		
SGW1	SUBMERGED GRAVEL WETLANDS (M-2)	2,840	1,396		
RG1	RAIN GARDEN (M-7)	9,529	7,885		
RG2	RAIN GARDEN (M-7)	2,617	1,408		
RG3	RAIN GARDEN (M-7)	6,411	4,285		
F1	FILTERRA	7,323	6,169		
RGP1-49*	RAIN GARDEN PLANTERS	18,257 -	18,257		

A	B C	D	E	F	G	Н	1	J	K	L	M	Ν	0	Р
Micro-Scale Practices		Contributi ng Drainage Area (sf)	% Imperviou s Cover	Direct ESDv Received by Practice (cf)	WQv or ESDv from Up- Gradient Practices (cf)	Practice Specific Paramete r(s)			WQv or ESDv credit (cf)	Runoff Volume Remainin g (cf)	Down- Gradient Practice		Baseline Phosphor ous Removal Efficiency	
Rain Gardens (C/D Soils)	ESDv credit is based on design storage volume	6.358	86%	1,177	278	Surface Area (sf) 500	Ponding Depth (ft) 0.5	Media Depth (ft) 1	450	1,005	Micro- Bioretenti on (C/D		25%	25%
	ESDv credit is based on design storage volume	2.617	42%	252	0	Surface Area (sf) 210	Ponding Depth (ft) 0.5	Media Depth (ft) 1	189	63			25%	31%
Rain Gardens (C/D Soils)	ESDv credit is based on design storage volume	4,950	76%	817	0	Surface Area (sf) 620	Ponding Depth (ft) 0.5	Media Depth (ft) 1.25	620	197			25%	31%
Rain Garden Planter Boxes	ESDv credit is based on design storage volume	15,862	100%	3,391	0	Surface Area (sf) 1,975	Ponding Depth (ft) 0.5	Media Depth (ft) 1.25	1,975	1,416			25%	29%
Rain Gardens (C/D Soils)	ESDv credit is based on design storage volume			0	0	Surface Area (sf)	Ponding Depth (ft)	Media Depth (ft)	0	0			25%	
Total		29,787		5,637	278				3,234	2,681			25%	29%

-24	A	В	
1	Calculation Summary		
2			
3	Critical Area 10% Calculations		
4	Removal Requirement, RR (lbs P / yr)	2.94	
5	after non-structural and micro-scale BMPs (Steps 5 and 6)		
6	Total Load Reduction (Ibs P / year)	2.93	
7	Total Load Reduction Remaining (Ibs P / yr)	0.01	
8	after structural practices (Step 9)		
9	Total Load Reduction (lbs P / year)	3.79	
10	Total Load Reduction Remaining (lbs P / yr)	0.00	
11			
12			
13	MDE's ESD to the MEP Calculations		
14	ESD Runoff Volume, ESDv (cf)	14191.00	
15	Total Treatment Volume (cf)	14191.00	
16			
17	WQv or ESDv Treated (cf)	14742.24	
18	PE achieved (inches)	1.87	
19			
20	Entire ESDv Treated Through Environmental Site Design?	YES	
21	ESDv Remaining? (cf)	0.00	
The second second	If ESDV is not fully treated, is ESD to MEP achieved?	0.00	
23			
24	Redevelopment WQv Requirements Met Through Environmental Site Design?	N/A	
25	WQv Remaining? (cf)	0.00	
26			
27	New Development WQv Requirements Met Through Environmental Site Design?	YES	
28	WQv Remaining? (cf)	0.00	
29		44	

Frequently Asked Questions

- What are the rules for measuring impervious cover?
- How do permeable pavements and green roofs affect impervious cover?
- How do you define site area for new/redevelopment?
- Where do you get data on predevelopment hydrologic soil groups?
- How do you deal with projects that cross the Critical Area boundary?

Potential Future Topics

• SWM 201: SWM Resiliency

- Overview of research
- SLR and potential issues when locating BMPs as well as BMP type
- Dealing with increased intensity and frequency of storms
- Saltwater intrusion
- Example : Town of Oxford
- Small projects under 5,000 sf (Alex's table)

How the <u>Spreadsheet</u> Works

- Efficiencies vary from 20% 80%
- One tab for each BMP
 - Allows for multiples of the same BMP
- Input of BMP-specific parameters (surface area, ponding depth, media depth, etc.)

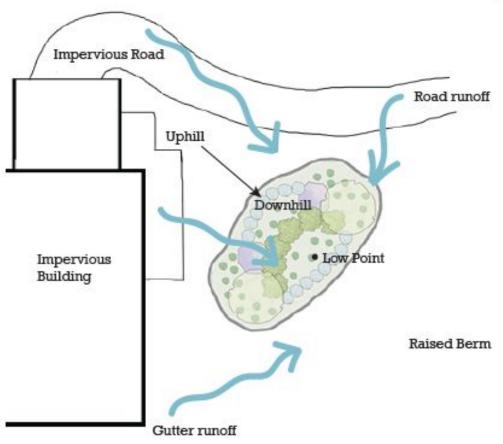
Practice	Microinfiltration *	Rain Garden	Microbioretention	Landscape Infiltration	Bioswale *	Planting	SWM for State <u>Projects</u> < 5,000 sf		
Limitations	only AB, DA < 500 sf	pd < 0.5 ft, filter bed 12- 18 in, DA < 2000	pd < 0.5 ft, filter bed > 18 in	only AB	many; filter bed > 18 in	Planting to meet stormwater management	sf = square feet (all values not given a		
250-500 sf	50 sf, 0.75 ft pd, 1.5 ft md	60 sf, 0.5 ft pd, 1.5 ft md	60 sf, 0.5 ft pd, 1.5 ft md	60 sf, 0.5 ft pd, 1.5 ft md	50 sf, 0.75 ft pd, 1.5 ft md	requirements is the preferred	measurement are sf) DA = drainage area		
500-1000 sf	(2) 500 DA, 50 SA, .75 pd, 1.5 md	115 sf, 0.5 ft pd, 1.5 ft md	115 sf, 0.5 ft pd, 1.5 ft md	115 sf, 0.5 ft pd, 1.5 ft md	95 sf, 0.75 ft pd, 1.5 ft md	option if (sf) planting is already already SA = required to mitigate for mitigate for pd = clearing. Refer to the Refer to the md Green Book * the Buffer for not			
1000-2000 sf	(4) 500 DA, 45 SA, 1 pd, 1.5 md	250 sf, 0.5 ft pd, 1.5 ft md	235 sf, 0.5 ft pd, 1.5 ft md	235 sf, 0.5 ft pd, 1.5 ft md	190 sf, 0.75 ft pd, 1.5 ft md		pd = ponding depth		
2000-3000 sf	N/A	(2) 1500 DA, 205 SA, 0.5 ft pd, 1.5 ft md	345 sf, 0.5 ft pd, 1.5 ft md	345 sf, 0.5 ft pd, 1.5 ft md	285 sf, 0.75 ft pd, 1.5 ft md		md = media depth		
3000-4000 sf	N/A	(2) 2000 DA, 280 SA, 0.5 ft pd, 1.5 ft md	460, 0.5 sf pd, 1.5 ft	460, 0.5 sf pd, 1.5 ft md	375, 0.75 sf pd, 1.5 ft md		* these practices do not limit pd, so the SA can be smaller		
4000-5000 sf	N/A	(2) 2000 DA, 280 SA, 0.5 pd, 1.5 md; 1000 DA, 150 sf	580, 0.5 sf pd, 1.5 ft md	580, 0.5 sf pd, 1.5 ft md	470, 0.75 sf pd, 1.5 ft md	species permitted.			

Permanent disturbance means a material, enduring change in the topography, landscape, or structure that occurs as part of a development or redevelopment activity. Permanent disturbance includes: construction or installation of any material that will result in lot coverage, construction of a deck, grading and clearing except under temporary disturbance, and a septic system in a forest or developed woodland on a lot created before program approval, if clearing is required.

Alternatives and Combinations

1) One hundred square feet of permanent disturbance may be offset with the planting of one ¼ inch caliper tree, or a standard rain barrel that holds a minimum capacity of 50 gallons.

Practices may be mixed and matched. For example, if a project falls in the 3000-4000 sf category, requirements may be met with two options from the 500-1000 sf category in combination with one option from the 1000-2000 sf category.


3) For projects that do not require planting, up to 2,000 sf of disturbance may be treated by planting.

Rain Garden - Landscaped depression that collects stormwater and allows it to be absorbed by soils.

Tips and Suggestions

When selecting the location and size of a rain garden there are a few things to keep in mind. A rain garden is used to infiltrate water that would otherwise wash away as runoff. Your rain garden should be located where water naturally flows or is redirected to flow on the site. A small berm should be built on the far side of the rain garden to allow the water to pool to the correct depth, and permeable soils are preferred to allow proper drainage. A rain garden can be planted with very aesthetically pleasing plants, and can be a showcase of any site. Rain gardens serve many purposes and filtering your rainwater runoff is only the beginning.

Example Rain Garden Sizing

Project LOD	Rain Garden	Ponding	Media
	Surface Area	Depth	Depth
500-1000 Sf	115 Sf	0.5 Ft	1.5 Ft

-Starting Your Own Rain Garden-

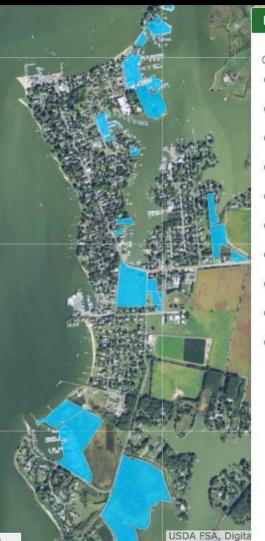
- 1. Avoid rainy weather, which may compromise the 6. Fill in your garden with the amended soil removed installation and materials. previously.
- 3. Excavate all vegetation off of the site.
- 4. Amend soil with compost and sand as needed to create the proper well-draining soils needed.
- 5. Excavate your site down to the desired depth, in this case 18", at the bottom add in a layer of gravel to atleast 3".
- 2. Locate all utility lines that go underneath the site. 7. Construct a berm on the low side of the garden, the height of the berm in the center should equal the desired ponding depth of the garden.
 - 8. Plant your native plants in the desired arrangement to nursery specifications for spacing.
 - 9. Mulch the entire planting bed to a depth of no more than 2-3" deep in an even surface.

Critical Area Program Strategies for Coastal Adaptation

Oxford: A Case Study

Anecdotal Assessment

Image Credit: Cheryl Lewis, Town of Oxford


Legend

Storm Surge

lurricane Storm Sur	ge
Category 1 St	orm Surge
Category 2 St	orm Surge
Category 3 St	orm Surge
Category 4 St	orm Surge
Category 5 St	orm Surge

Geographic Assessment

Geographic Assessment

Layer List

Operational Layers

- Rain Garden Parcels
- I High Flow Accumulation Parcels
- Grass Channel Parcels
- Bio Retention Area Parcels
- Public or Private Parcels
- Oxford Property Parcels
- 2100 Mean Sea Level Exposure
- 2100 Mean High Higher Water Exposure
- 2050 Mean Sea Level Exposure
- 2050 Mean High Higher Water Exposure

Programmatic Assessment

VERSION 3-11-14

Image Credit: Cheryl Lewis, Town of Oxford

Strategy: SWM < 5,000 SF

Strategy: IDA Tree Replacement

Diameter at breast height (DBH) of removed tree	Planting Requirement
Less than ten inches	One tree
Between ten and sixteen inches	Two trees
Greater than sixteen inches	Three trees

Strategy: Resilient MBAs

Strategy: Pervious Pavers in IDA

