Adapting Assateague
Design Strategies for Resilient Buildings and Landscapes
at Assateague State Park

Prepared by
Architecture 601: Adapting Assateague Studio
Summer 2021
Contents

01 ASSATEAGUE ISLAND
Historical, Current, and Future Conditions
- Land Use and Ownership, Past and Present
- Geomorphological Change and Habitat Distribution
- Human and Non-human Habitat
- Sea Level Rise Projections and Park Topographies

02 RESILIENCY PLANNING
Strategies for a Resilient State Park
- From Lot to Landscape: Redesigning Park Parking
- Shifting Sand: Dune Expansion + Shoreline Nourishment
- Resilient Campground: Flexible Loops + Adaptive Sites
- Evolving Recreation: Rewilding Rum Pointe Golf Course

03 PARK ARCHITECTURE
Ranger Station Building and Landscape Design
- Resilient Architecture: Kit of Parts and Prototypes
- Design Proposal 01: Assateague Promenade
- Design Proposal 02: Ranger Station Dunescape
- Design Proposal 03: Ranger Station Resiliency
ARCH601:
topical inquiry
tasked to work directly with the Department of Natural Resources to design a new Ranger Station and create a Resiliency Masterplan for the island.
Assateague Island is a 37-mile long barrier island along the coasts of Maryland and Virginia, and is part of a chain of barrier islands stretching from Maine to Texas. The island is bordered by the Atlantic Ocean on the east and the Sinepuxent Bay on the west. The landscape is characterized by sandy beaches, salt marshes, maritime forests and coastal bays that are inhabited by waterfowl, deer, clams, and wild horses.

The island, once used by the Assateague tribe as fishing and hunting grounds, has a rich post-colonial history of changing land use and geomorphological flux. More change is coming, as sea level rises and storm surges intensify, which will have dramatic effects on the ecologies of the island and the infrastructure of Assateague State Park.
Land Use and Ownership, Past and Present

Assateague State Park is an 150-acre coastal park, located primarily along a two-mile stretch of Assateague Island, a 37-mile long barrier island off the eastern coast of Delaware, Porkins. Bordering the Atlantic Ocean to the east and the Sinepuxent Bay to the west, the park's sandy dunes and coastal bays provide diverse habitats that support rich ecological communities. These habitats—bay and marsh, beach and intertidal zones, dunes and grasslands, wetlands, marshes, and shrub and forest areas—are influenced by the dynamic coastal processes that shape the barrier island.

The many ecosystems and natural resources of Assateague Island have spurred and supported human activity there since the 1600s, when the Assateague Indians used the island for fishing and hunting. Today, people visiting the island have access to its rich wildlife and opportunities for nature-based recreation. The responsibility for the protection and management of the island's natural resources is divided amongst the U.S. National Parks Service, the U.S. Fish and Wildlife Service, and the Maryland Department of Natural Resources (MDNR). The Maryland DNR manages Assateague State Park, the most visited state park in Maryland.

Assateague State Park occupies an area on both the mainland and Assateague Island, and the two areas of the park can be accessed through the Assateague Bridge. The mainland portion of the park includes the park headquarters and visitor centers, as well as the Redfield House, a 19th-century plantation house where visitors can learn about the history of the region and the Native, African, and European Americans who occupied the site. On Assateague Island there is a range of park infrastructure, including day use areas, campers, a ranger station, visitor center, bathhouses, gift shop, concession stand, and marina. Visitors can access day use areas including the beach, picnic areas, hiking trails, play spaces, and the nature center. Overnight visitors can stay on the campground, which is 322 campsites as well as eight youth group campsites located around ten loops along the Atlantic coast (see Appendix for full park map and list of infrastructure).

The infrastructure in Assateague State Park is protected by a 2-mile long artificial dune; however, the dune has impeded natural recession and sand transport and overwash processes necessary for the continued health of the island and its habitats. While dunes cut through the dune in 2006 and 2009 have permitted overwash and rotated habitat, balancing the park’s shifting geographies with visitor requirements will be necessary to meet the future needs of the island.
Day Users and Campers: Two Populations, Two Experiences

Today, people coming to Assateague State Park can experience it in two ways: as day-use visitors or as campers. As visitors enter the park from Maryland Bridge, day-use visitors pass through a booth and into a designated parking lot. From there, visitors can pass through the Pony Express gift shop and grill, where concessions, grocery items, and souvenirs are available. The beach is accessible a short walk past the Pony Express and dunes separating the ocean from day-use facilities.

Campers staying on the island enter through the campground booth and past the Ranger Station, a building constructed in 1981 and housing the campground office and park employees. The 342 campersites are located along quarter-mile loops southwest of the Ranger Station. Each loop contains a bathhouse, with one dump station shared amongst all campers. In total, there are nine newly remodeled bathhouses with warm/cold water, interior and exterior showers, and exterior dishwashing sinks. Visitors have access to six miles of paved asphalt roads, a paved hiking/biking trail, the nature center, and the Atlantic coast. Trails within the campgrounds connect to other trails within the National Seashore, managed by the U.S. National Park Service.

Through these facilities, visitors of Assateague State Park can observe the island’s unique ecosystems and participate in a range of water- and land-based activities such as swimming, fishing, kayaking, crabbing, hiking, bicycling, and wildlife viewing.

ABOVE: Views to Ranger Station and day-use parking lots. (By Y. Korney)
RIGHT: Mapping the separate and different spatial sequences of day-users and campers. (By S. James)
Sea Level Rise Projections and Park Topographies

Since 1990, global sea level has risen by between 0.02 and 0.04 inches annually, an issue particularly important for barrier islands due to the potential impacts of sea level rise on shorelines, marsh stability, and groundwater sources. On Assateague Island, the rate of sea level rise is significantly higher than the global average rate, with the sea level projected to increase by up to 7.5 inches by 2030. Currently, sea level rise affects two to five feet of the island’s shoreline each year, and the ongoing changes in sea level will have greater impacts and consequences into the future. (2013 ASS Geologic Resources Inventory Report 10-17)

Sea level rise is expected to impact many processes and systems on Assateague Island: shoreline erosion, saltwater intrusion into aquifers, wetland inundation, coastal flooding, the condition of infrastructure and cultural resources, storm surge intensification, and coastal geomorphological processes. While changes to barrier islands as a result of sea level rise cannot be precisely predicted, it is likely that as the sea level in the mid-Atlantic changes, Assateague Island will migrate landward, disintegrate in areas that are frequently inundated, and transform into a submerged marine sand body. Additionally, erosion and shoreline retreat, already prevalent along the northern tip of the island, may be exacerbated by higher sea levels, and sea level rise is very likely to result in significant morphological changes to Assateague Island.

Over the past several decades, the Maryland Department of Natural Resources and the National Park Service have attempted to better understand and mitigate issues related to sea level rise on the island through research and restoration projects. These projects have laid the groundwork for steps taken to stabilize the island and decrease shoreline erosion and disintegration. However, questions concerning habitat vulnerability, freshwater salinization and wildlife impacts, and opportunities for infrastructure replacement remain a priority for the effective planning and management of Assateague Island and its resources.
Impacts of Sea Level Rise on Park Habitats

Changes in the rate and extent of erosion, overwash, and inlet formation as a result of sea level rise will cause shifts in habitat throughout the island. Overall, habitat and species diversity is expected to decline, with species tolerant of greater and more frequent disturbances surviving. Inland areas that require more stable conditions, such as forests and shrublands, are likely to decline as sediment movement, saltwater intrusion, and other climate-driven changes increase.

Of the island's habitats, salt marshes are particularly vulnerable to sea level rise due to their low elevation. Increases in sea level raise the potential to erode and overwhelm the marshes, ultimately converting them from wetlands to intertidal mudflats or open water. Although some marshes may migrate inland to areas of higher elevation, large areas of marshland will likely be lost, resulting in decreased primary productivity, reduced habitat availability for many diverse species, and a decline in the availability of aquatic species necessary to the region's fisheries.
Infrastructure Response to Sea Level Rise

The loss of land expected to occur with sea level rise will impact the ability of the infrastructure in Assateague State Park to continue to provide facilities for visitors. Fixed infrastructure, including roads, parking lots, the visitor center, and ranger station, will be increasingly susceptible to the impacts of climate change — increased flooding, saltwater intrusion, higher tides — and as such will be more difficult and costly to maintain. The campgrounds, also vulnerable to flooding, may become difficult to access due to the movement of sand onto roads and campsites.

In response to sea level rise and related changes, several adaptive measures for infrastructure are being pursued and undertaken, including low impact road and parking lot construction, the design and construction of mobile facilities that can be moved off-site when necessary, and the construction of floodproof buildings.

ABOVE: Island cross sections with sea level rise scenarios and major storm wave heights. (By J. Lee)

RIGHT: Details of major storm wave heights at jetty area. (By J. Lee)
CRAB (Climate Ready Action Boundary) Elevations

One metric used to inform flood proof design is the Climate Ready Action Boundary (CRAB) elevation, defined by the Maryland Department of the Environment as the elevation of the 100-year FEMA floodplain plus an additional three feet. The Maryland Department of Natural Resources requires that all damaged, essential state and local structures located seaward of the CRAB be constructed with a first-floor elevation at least one foot above the CRAB elevation. Following these guidelines, the ranger station and other visitor facilities in Assateague State Park must be elevated ten feet above sea level, or four feet above their present ground level elevation, to ensure that the structures are resilient to sea level rise and flooding events.

ABOVE: Assateague State Park causway cross sections with major storms new heights. By J. Leer

BOTTOM: View of causway at Assateague island. By T. Knoell

RIGHT: Climate Ready Action Boundary (CRAB) standards and marsh detail with sea level rise elevations. By J. Leer
Climate Ready Action Boundary (CRAB) at Ranger Station

- First Floor Elevation
- CS: CRAB Elevation + (at least) 3 ft
- Finish Floor Elevation
- FEMA Base Flood Elevation (BFE)
- Freeboard
- Flood Zone AC
- Sea Level

Scale: 1/4" = 1' - 0"
Human and Non-human Habitat

The diverse habitats of Assateague Island support an abundance of mammal, amphibian, bird, insect, crustacean, and fish species. In the ocean surrounding the island, there are whales, seals, and dolphins, as well as flounder, sea trout, and striped bass, with the latter three drawing people to the island for inlet and surf fishing. While the sandy, constantly-changing beach environments support minimal plant life, Loggerhead sea turtles (Caretta caretta) and nesting shorebirds such as piping plovers (Charadrius melodus) and black skimmer (Rynchops niger) can be found along the beach.

Moving inland, the harsh and salty dunes provide habitat for red fowl (Calidris canutus) and several snake species. In the sheltered zones beyond the dunes, forest-dwelling species including fiddler crabs (Uca pugnax), northern harlequin ducks (Histrionicus histrionicus), seven white-tailed deer (Odocoileus virginianus), and non-native silvery eel (Anguilla anguilla) are present. The island’s silvery eel, introduced from Asia in the 1950s, competes with some native species for resources; as such their population throughout the island is managed through harvesting on Assateague Island National Seashore. Near the center of the island, freshwater ponds provide breeding habitat for several frog and toad species.

Closer to the bay, rich and productive marshlands provide habitat for a wide range of species including blue crabs (Callinectes sapidus), horseshoe crab (Limulus polyphemus), American eel (Anguilla rostrata), red-winged blackbirds (Agelaius phoeniceus), dowdy woodcocks (Scolopax rusticola), and migratory birds that stop at Assateague Island on their routes along the Atlantic migratory flyway. Of the more than 345 bird species that have been sighted on the island, the most prevalent include osprey, herons, egrets, and sandpipers. The marshes and forests on Assateague Island support a diverse range of plant species, including clapper rail (Rallus longirostris), red-winged blackbirds (Agelaius phoeniceus), dowdy woodcocks (Scolopax rusticola), and great horned owls (Bubo virginianus), while the more temperate, coastal waters attract temporary migratory birds such as brent geese (Branta bernicla) and b震en petrels (Pelecanus occidentalis).

The sheltered, nutrient-rich waters along the bay side of the island provide habitat for many aquatic species, particularly blue crabs (Callinectes sapidus), a species culturally and commercially important to the region, and fish, who migrate to the estuary in the spring to breed.
Wild Horses of Assateague

Of the many species inhabiting Assateague Island, the most well-known are the wild Assateague horses, who roam freely throughout the island. Over time, these short, stocky horses have adapted to the island's habitat and climate, feeding on grasses and other plants in the salt marshes. Because the best food sources are found in the mainland, the horses tend to live there for most of the year. In summer, the horses migrate to the beach where there are fewer insects; that is where they can be viewed by summer visitors.

Today, there are approximately 230 horses on the island, with around 80 in the Maryland herd and 150 in the Virginia herd; the herds are separated from one another by a fence at the Maryland-Virginia state line. While the horses are a cultural resource and an attraction important to many island visitors, their grazing and trampling decreases the presence and height of grasses, which in turn can reduce habitat for birds and disturbs the dunes. To minimize negative impacts that the horses can have on the island's ecosystems, the horse population is controlled through contraceptives vaccines in Maryland, while in Virginia, foals are sold at an annual auction. These programs have ensured a sustainable herd population and the continued health of Assateague Island and all of its inhabitants.

ABOVE: Distribution of non-human inhabitants of the park (2018). (By Y. Košarj)
CENTER: View of Assateague wild horses grazing on dune grass at the primary dune.
RIGHT: Distribution of non-human inhabitants of the park (partial island sections). (By Y. Košarj)
Dune Formation and Maintenance

The ongoing stability of the dunes along Assateague State Park is of great importance to the protection of infrastructure and habitat. First constructed in the 1970s, the park’s 110’-tall primary dune was designed to protect visitor facilities from overwash and other natural barrier island processes. However, the dune has been continually destroyed by storm events and then later rebuilt, a process that has accelerated erosion and narrowed the beach, to stabilize the dune, two fences have been added, providing places for sand to collect, building up the dune edge and broadening the dune. Other measures to stabilize and reinforce the dune include adding sand to the western side of the dune and planting American beach grass (Ammophila breviligulata).

While dune restoration strategies can provide protection from erosion, high tides, intense storms, and storm surges, other measures focused on adaptive infrastructure may increase the resiliency of the park’s facilities to storms and sea level rise. For example, by constructing moveable facilities and replacing asphalt with clay and clamshell construction, it may be possible to protect necessary infrastructure while restoring natural barrier island function and minimizing dune maintenance.

ABOVE: Vegetation of secondary dunes. (by Y. Koerner)
RIGHT: Construction process of primary dune. (by Y. Koerner)
ABOVE RIGHT: View of fence line at primary dune (detail). (by Y. Koerner)
BOTTOM RIGHT: View of fence lines at primary dune (detail). (by Y. Koerner)
Strategies for a Resilient State Park

Assateague Island is not just a landscape in flux—it is a place of intensifying change as natural coastal processes, storms, and sea-level rise shape and shift the island. Climate change models predict that by 2040 the island will experience increases in temperature and extreme weather, a sea level rise of 3.5–9 inches, and altered precipitation patterns.

In the face of these changing conditions, a Resiliency Plan is being formed by the Maryland DNR, with a mission to “conserve and foster an appreciation of the natural resources of Assateague State Park and to continue to provide substantial recreational opportunities for as long as possible in a sustainable manner.” This ethos guides the range of ongoing and new resiliency strategies on the following pages that address dune maintenance, sand fencing, camp loops, parking lots, and educational spaces.
Strategies to Increase Surface Porosity and Shading

Preceding, the parking lot is paved entirely with asphalt. This design proposes that some impervious asphalt cover be reduced and replaced by native materials such as clay and crushed shells, particularly on parking spaces and patios. Unlike asphalt, when these materials are damaged, they blend more easily with the environment and cause less harm to the habitats and species across A asserts a Island. The crushed shells used on pedestrian walkways also serve as a transitional material between the built-up areas and the permeable dunes and beaches.

The design proposal also introduces several shading systems throughout the parking lot. Trees, specifically locally-pieces SPF beech, can be planted along walkways to provide shade and comfort for pedestrians as they move across the parking lot and between the Ranger Station and the Pony Express. The trees may also be designed to withstand wind as well, serving to block storm winds coming from the northeast and warm, western winds from the southwest bay.

ABOVE Surface porosity, pedestrian spaces, and shade. (By S. James)

RIGHT Detail of surface porosity, pedestrian spaces, and shade. (By S. James)
Proposed Vehicular Circulation

To improve the experience of overnight visitors checking in at the Ranger Station, a drive-in camper check-in lane is added closer to the Ranger Station, with space adjacent to the lane available for a staffed booth, allowing for increased area and efficiency. A dedicated parking area for RVs is also created, enabling the circulation of RVs and cars while also providing temporary parking for RVs.

The added median strip where the check-in booth could be located also creates an opportunity for additional landscaping and the introduction of green space. Trees, shrubs, and ground cover would reduce surface heat gain, provide shade, and break up the large asphalt parking lot.

ABOVE View of Ranger Station lot and day-use area. (By P. Kooymans)

RIGHT ABOVE Current parking conditions. (By S. Jemend)

RIGHT BOTTOM Current conditions of ranger station lot, and proposed vehicular circulation with camper check-in lane. (By S. Jemend)
Ranger Station Landscape

This design proposal suggests expanding the program of the Ranger Station so as to increase public facilities and establish an educational landscape around the building.

This landscape creates a welcoming environment and provides an alternative destination for visitors. Signage throughout the education landscape will educate visitors about the plants and animals on Assateague Island and will orient them for visitor interactions with the Island's ecosystems.

The educational landscape connects to other landscaped areas, including the pedestrian pathways, which link the Ranger Station to the Pony Express and provide a green corridor for park users to enjoy.

ABOVE: Proposed Ranger Station site, landscape iterations, by S. Jamieson

CENTER: View of Ranger Station by S. Y. Kelemen

RIGHT: Detail of Proposed Ranger Station site, Iteration 1, by S. Jamieson
Campsite Distribution

The campsite are divided amongst the various loops, with 21 sites in Loop "A", 23 in Loop "B", 36 in Loop "C", 18 in Loop "D", 35 in Loop "E", 45 in Loop "F", 35 in Loop "G", 114 in Loop "H", 11 in Loop "I", and 6 in Loop "J". In recent years, the paved areas closest to the dunes at several loops have been demolished, removed, and replaced by a loop road that runs inland of the current road and dune fencing. This strategy has removed the most vulnerable campsite from being covered by sand from the primary dune during storm events.

ADJOINT Campsite catalog (by Y. Kuenz)

RIGHT Campsite loops (by Y. Kuenz)
Campsite Characteristics

The park-in campsites, accessible by RV and car, are paved with asphalt and each contains a picnic table and fire ring. The sites range in size from 150 square feet (20' x 15') to 2,080 square feet (60' x 34').

The walk-in campsites are slightly smaller than most of the park-in sites, each with an area of 190 square feet (15' x 15'). The walk-in sites also house a fire ring and interior seating; however, they are not paved. Rather, the sites follow the natural topography, with the existing grass and sand preserved. The campsites are levelled, with clay added to the paths, and the edges delineated by posts along the perimeter.

ABOVE Campsite types: RV “Park-in” camping site, and “Walk-in” camping site. (by Y. Kosan)

CENTER View of typical campsite bathrooms. (by Y. Kosan)

ABOVE RIGHT Campsite count and dimensions. (by Y. Kosan)

BOTTOM RIGHT View of typical RV “Park-in” camping site. (by Y. Kosan)
Adaptive Campsites: From RV sites to Walk-in sites

To adapt the campsites to a changing climate, this proposal calls for transforming the existing park-in loops to hybrid loops that accommodate both park-in and walk-in visitors. This change is imagined as happening in phases over time. RV sites closest to the dune can be converted into walk-in campgrounds, with additional vehicular parking located adjacent to the loop along Campground Road. A smaller RV loop would be established closer to the road so as to continue to provide ample space for park-in campers while protecting the paved sites from dune migration and severe weather events. If a third sand isLoading were added to widen and replace the dune, the RV loop could be further reduced in size while the area used for walk-in campers could increase. Although this configuration would require a more compact arrangement of sites, the campsite layout could more readily accommodate the topography of the secondary dunes, and will be more resilient to changes along the Anacapa coast.

ABOVE: RV camp loop ‘F’ transformation sequence over time. (by Y. Koo)
RIGHT: Existing RV camp loop ‘P’. (by Y. Koo)
RUM POINTE LAND ACQUISITION AND REWILDING OF COURSE

PRECEDENTS

ORCHARD HILLS PARK, CHESTERLAND, OHIO
337-ACRE
Formerly managed as a golf course, is in the process of rewilding a natural landscape. Six trails total 3.9 miles. Children can have fun here or as an orchard-themed playground. Restoration has been funded in part through a grant from the Ohio Environmental Protection Agency and U.S. Environmental Protection Agency under provisions of Section 319(b) of the Clean Water Act.

Amenities
- Athletic Fields
- Cross Country Skiing

FOREST BEACH MIGRATORY PRESERVE, BELGIUM, WISCONSIN
116-ACRE
Located along Lake Michigan in the town of Belgium, Forest Beach Migratory Preserve was established in 1977. This preserve contains a 5-acre hardwood forest with woodlands, prairies, and fields, and preserves 10 miles of trails that support a variety of migratory birds, reptiles, and mammals.

Amenities
- Fishing
- Water Features
- Bird Watching

THE HIGHLANDS, GRAND RAPIDS, MICHIGAN
129-ACRE
Broadway Nature Center and the Land Conservancy of West Michigan collaborated on the purchase of the Highlands Golf Course in Grand Rapids in the winter of 2017 with a vision to transform the property into a natural area for community recreation and education. The vision is to transform the former golf course into a premier space for learning, recreation, and conservation in open a setting. The Highlands is a place where people of all ages can discover nature.

Amenities
- Hiking Trails
- Bird Watching
- Leashed Pets Allowed

REWILDING OF GOLF COURSE

PHASE 1: DECONSTRUCTION

PHASE 2: RE-NATURALIZING

PHASE 3: ADDING AMENITIES

PHASE 4: BEACH FRONT
The sands, dunes, and shoreline of Assateague Island are constantly shifting, moved by winds, waves, and rainfall. Because these forces have caused the sandy area off the island to shrink and move westward, several restoration projects have been pursued to mitigate the sand starvation and shoreline retreat occurring in Assateague State Park.

Today the shoreline is maintained through a long-term habitat restoration project in partnership between the National Park Service and the United States Army Corps of Engineers. Every year dredged sand is placed on the northern end of the island to mitigate some erosional effects of the inlet on Assateague's beaches and dunes. The sand is pushed southward toward Assateague State Park by longshore currents and winds, allowing for the park's shoreline to be passively restored. The sand used for shoreline replenishment is dredged from places in the region where it has accumulated, including at the Ocean City Inlet. The dredging and relocation of sand from the inlet both support beach maintenance and helps the inlet for recreational purposes and utilization by commercial fisheries.

New sand fence strategies can be implemented in Assateague State Park to better maintain the primary dune and prevent sand on the landward side of the dune from covering camp sites following storms, which is a costly and labor-intensive maintenance issue. Currently, the fence line between the dune and the camp loops is a straight line. But new configurations could help to alleviate erosion issues that routinely compromise the camp sites. Placing new fencing near the camp sites and in areas between the camping loops and secondary dunes, as well as using fencing to connect the primary dunes with the secondary dunes, could reduce the primary dune and thus decrease the occurrence of overflow rain during storm events. Another opportunity could be to place a back fence along the camping loops so as to both widen the existing dune and create a tighter alignment between the dunes and the camp sites. As W camping is phased out in coming years and camp loop configurations shift westward, the fence line can follow and the primary dune can be widened. The broadened primary dune would permit the ongoing use of the park's camp sites, even as the island continues to shift.
Active Beach Nourishment

During the early 2000s, an active beach nourishment project was undertaken, replenishing the shoreline by expanding it 50-100 feet seaward through the addition of 1.8 million cubic feet of sand directly onto the beach.

While the addition of sand is necessary for the replenishment of Assateague Island's shoreline, nourishment of this kind can cause damage to existing habitats. For example, several bird and insect species present on the island, including piping plovers (Charadrius melodus), least terns (Sterna antillarum), black skimmers (Rynchops niger), and tiger beetles, nest along the beach. The large scale addition of sand to the shoreline can cause nests located near the shore to be covered by sand and can therefore pose a threat to the continued health of beach-dwelling species.

Top left: Photo of passive sand nourishment (left) and active beach nourishment (right). (By J. Lee)

Center: View of erosion at dune. (Photographer unknown)

Right: Diagram of sand placement during one-time active beach nourishment project in early 2000s. (By J. Lee)
Dune Shaping Processes

The island’s dunes are shaped primarily by three forces: wind, waves, and rainfall. Most of the sand composing the dunes is moved by wind, with the overall volume of the dune being pushed landward as wind causes smaller grains of sand to pile up behind the dune’s original location. The dunes are eroded during storm events, when waves hit the dune and remove large volumes of sediment. The vertical force of rainfall can also shape the dunes, flattening them during heavy rain events.

To minimize the impact of these forces, the Maryland Department of Natural Resources has implemented several strategies to maintain the dunes and protect the infrastructure in Assateague State Park. Ongoing dune maintenance practices include planting shrubs and grasses to stabilize dune sand, adding fencing to trap sand and build up the dunes, and widening the dunes through the addition of sand.

Wind Force

- The greatest volume of sand can be moved by strong wind because the amount of sand moved by wind is a power function of the wind speed. A wind of a particular velocity usually moves smaller grains and those smaller grains pile up behind the original dune. Eventually, the volume of dune will be pushed back through the wind force.

Water (Wave) Force

- During a storm, water levels are elevated because of storm surge and large waves are being produced. Those large waves constantly hit the dune, and can cause erosion and the removal of significant volume of sediment from the dune.

Rainfall Force

- Heavy rainfall can erode steep dune faces. Vertical forces by rainfall make the dune flatter and the condition of the surface changes after rain due to moisture absorption.
Proposed Practices of Dune Maintenance

Various Shapes of New Fence Placements

1. Between Loops and Dunes
 - Back fences near campsites can be shaped so that the primary dune could be extended into areas between camping loops and between secondary dunes. It allows the primary dune to form recession zones.

2. Parallel to the Camping Loop
 - Another possible shape of back fences is to place them along with the camping loop. It not only creates wider dune but also provides connection with the existing camping loop.

3. Connected to Secondary Dunes
 - Through this shape of fence, the primary dune can connect with the secondary dunes. In this way, there could be a chance to reduce erosion faster during the storm events.

Proposed Fence Placement
03 Park Architecture

Ranger Station Building and Landscape Design

The redesign of the Ranger Station at Assateague State Park is an opportunity to create a new and welcoming point of arrival to the park. The design proposals on the following pages illustrate how passive solar and ventilation strategies can be creatively employed in the building. Case study projects, along with local indigenous and vernacular building practices were studied to derive design principles. The original program requirements have been expanded to include the design of a public, educational landscape, a space where visitors can gather to learn about the ecologies of the island and dynamic processes that shape it. The proposals also reimagine the Ranger Station parking lot as a landscape shared by people and cars, which offers a new, shaded pedestrian path between the Ranger Station and the Pony Express.
CRAB (Climate Ready Action Boundary) Elevations

One metric used to inform flood-proof design is the Climate Ready Action Boundary (CRAB) elevation, defined by the Maryland Department of the Environment as the elevation of the 100-year FEMA floodplain plus an additional three feet. The Maryland Department of Natural Resources requires that all damaged, essential state, and local structures located waterward of the CRAB be constructed with a first-floor elevation at least one foot above the CRAB elevation. Following these guidelines, the ranger station and other visitor facilities in Assateague State Park must be elevated ten feet above sea level, or four feet above their present ground-level elevation, to ensure that the structures are resilient to sea level rise and flooding events.
THE GREETING

EXISTING TREE

DUNE EXPERIENCE

EDUCATIONAL TERRACE

EXTENSIVE OVERHANG

ABOVE The Greeting. Perspective view to main entry of Ranger Station. (by Y. Kimar)
Site and Building Organization

The site strategy for the project includes positioning the Ranger Station to the northern end of the site, in order to preserve an existing tree at the center of the site. This tree becomes a focal point in the Dunescape educational landscape, which features tree-shaped dunes and winding paths that encircle the tree. A large, multi-level project from the southern facade of the building and provides shade for seating, creating a gathering place in between architecture and landscape.

The Ranger Station is a rectangular volume, with public program positioned at the ends of the volume, and private program in the space in between. The main entry to the building is located at the east facade, and is accessible to visitors approaching from the parking lot as well as walking from the Pony Express. The building is oriented on plans for flood protection, and the entire building is encircled with a broad porch and colonnade, which is shaded by generous roof overhangs.

ABOVE Site plan (by Y. Konsar)
RIGHT ABOVE Ranger Station floor plan (by Y. Konsar)
RIGHT BOTTOM Part diagram (by Y. Konsar)
Passive Solar Strategies

The Range Station design follows best practices for passive solar strategies in the Mid-Atlantic region. The rectangular volume is oriented with its long axis in the east-west direction. Deep overhangs are designed to block summer sun from heating the building, which will limit the need for energy-intensive cooling in the summer. Allowing the winter sun to penetrate the building means that less energy expended on heating the building during winter months. A trellis on the southern facade shades the outdoor gathering space at the Dunescapce.

ABOVE: Passive solar strategies [section] (by Y. Kwon)
CENTER: Summer solar angles (by Y. Kwon)
BOTTOM: Winter solar angles (by Y. Kwon)
RIGHT: Building sections and elevations (by Y. Kwon)
Site and Building Organization

Assateague Promenade features a parking lot transformed into a landscape with increased permeability, more efficient vehicular traffic, and new pedestrian paths and experiences.

The program of the Ranger Station is distributed among three wings of the Z-shaped building. The public wing features camper check-in spaces and well-as administration spaces for staff. The first aid area is located in this wing, but shielded from the view of the public. The western wing includes staff offices, lounge, and bathroom, while the eastern wing includes office space, service, and storage.

The building is constructed on intermittent foundation walls, and the eastern and western wings of the building are designed to be mobile and can be moved during major storm events to prevent damage.

Site plan, by S. Jennings and J. Lee

Above Right: Ranger Station floor plan, by S. Jennings and J. Lee

Bottom Right: Pany diagram, by S. Jennings and J. Lee
Passive Solar and Ventilation

Passive solar strategies at the building include an overhang that is designed to help mitigate summer sun while allowing winter sun to penetrate the building. Photovoltaic panels are introduced on the southern roof for passive energy production.

The building is cooled through passive ventilation strategies that allow prevailing winds and ocean breezes to move hot air out of the building via high windows and gable vents.

Above: Passive ventilation diagram. (By S. Jimenez and J. Lee)

Bottom: Photovoltaic diagram. (By S. Jimenez and J. Lee)

Right: Building sections and elevations. (By S. Jimenez and J. Lee)
Design Strategies

The need for the building to be elevated such that finished floor is 4’-0” above the ground based on FEMA standards opens many design possibilities for linking building and landscape. In the project, the elevated building is supported by a series of foundation walls elevate the building, serve as retaining walls that shape the “constructed dunes,” and allow air flow below the building. The semi-private wings of the building can be relocated in anticipation of major storm events.

The project also explores the design principle of "ecotones" between building and landscape. At the entry sequence to the building, visitors experience different degrees of permeability both above them and below. Visitors walk under a tree canopy followed by a wall, before finally entering under the impermeable canopy of the roof building. On the ground, the parking lot is designed with a high degree of permeability, followed by a semi-permeable deck, and finally the non-permeable floor of the building.

Above: Strategies for elevating building for flooding. (by S. James and Z. Lee)

Right: "Ecotones" between building and landscape. (by S. James and Z. Lee)