APPENDIX A: Coast Smart Project Screening Form

This document is intended to help Maryland State agency personnel and others understand and apply the Coast Smart Construction Program guidelines for various phases of their capital project to prevent or minimize the future impacts of coastal and riverine flooding, storm surge and sea level rise inundation.

1. Applicability.
 Does the State or local capital project funded with more than 50% State funds and costing at least $500,000 involve:
 a. Construction of a structure: Yes _____ No _____
 b. Reconstruction of a structure: Yes _____ No _____
 c. Construction of a new highway facility: Yes _____ No _____

2. Coast Smart Climate Ready Action Boundary (CS-CRAB) and CS-CRAB Elevation.
 a. Is the project located waterward of the CS-CRAB? Yes* _____ No _____
 *If yes, include a map showing the proposed footprint of the project relative to the CS-CRAB. Also, provide the CS-CRAB Elevation and lowest ground elevation of the structure or highway facility.

3. General Project Information.
 a. Project name:
 __
 b. Location (Address, Community Name, Zip Code):
 __
 c. Contact Name:
 __
 Email: _________________________________ Phone: ______________________
 d. Brief project description:
 __
 __
 __
 __
 __
 e. Tax Map/Grid/Parcel or State Department of Assessments and Taxation (SDAT) Account Number:
 __
 f. Flood Insurance Rate Map (FIRM) Panel No.: __________________________
 g. FIRM effective date: __
 h. Identify (circle) Flood Zone(s) present:
 Zone A, Zone AE, Zone AH, Zone AO, Zone AR, Zone A99, Zone V, Zone VE, Zone X (shaded or unshaded) or Zone D
4. **Categorical Exemptions.** Does your project qualify for any of the approved Categorical Exemptions? If yes, please identify which exemptions apply below:

 a. Water-Dependent Uses
 b. Passive Public Access
 c. Historic Structures
 d. Temporary Structures or Uses
 e. Emergency Use

Note: If your project qualifies for a Categorical Exemption and is located waterward of the CS-CRAB, you are still required to include adaptation and resiliency features to prevent or mitigate damage to the maximum extent practicable.

5. **Project Design Life.** What is the timescale for project planning, design, construction, maintenance and operation? Select one.

 a. Short-term project (design life < 25 years)
 b. Medium-term project (design life between 25-50 years)
 c. Long-term project (design life between 50 – 100 years)
 d. Very long-term project (design life > 100 years)

6. **Project Vulnerability Assessment.** In project planning, it is useful to consider the proposed project’s vulnerabilities to sea level rise impacts (i.e., future inundation, flooding and storm surge corrosion due to saltwater intrusion or salinization) over the course of the project’s design life. Answering the following questions will provide project planners with awareness regarding vulnerabilities that may warrant additional siting or design considerations.

Note: When planning new State and local structures and highway facility projects with a design life that is not expected to extend beyond 50 years or where there is a relatively high risk tolerance limit (e.g., rare flooding is tolerable), assess vulnerability using current “medium range” or “best estimate” relative sea level rise projections. When new State and local structures and highway facility projects with a design life that is expected to extend beyond 50 years or where there is a very low acceptance of any flooding risk, apply current “high” end relative sea level rise scenarios or projections.

 a. Is the project located in an area that experiences nuisance flooding?
 i. Yes _____
 ii. No _____

 b. Is the project a critical or essential facility?
 i. Yes _____
 ii. No _____
c. Will there be any external electrical or mechanical systems servicing the structure or highway facility?
 i. Yes* _____ ii. No _____

 * If yes, will they be elevated?
 i. Yes _____ ii. No _____

d. Will there be external fuel tanks (e.g., propane)?
 i. Yes* _____ ii. No _____

 Describe type and indicate whether they are above-ground or underground storage tanks: ____________________

 * If yes, the external tanks should be anchored and/or elevated.

e. Will there be any enclosures below the first floor?
 i. Yes* _____ ii. No _____

 * If yes, will the enclosure have flood openings?
 i. Yes _____ ii. No _____

f. Ecosystem Resiliency. Circle all ecological features on site that may serve to buffer the project from the impacts of future sea level rise inundation, coastal flooding or storm surge:
 i. Vegetated or forested buffers
 ii. Dunes
 iii. Beaches
 iv. Wetland or marsh system
 v. Oyster beds or reefs
 vi. Barrier island(s)
 vii. Potential wetland migration on site
 viii. Habitat adaptation areas on site
 ix. Natural and nature-based features that could be enhanced, restored or created to provide additional protection against future sea level rise inundation and coastal storm impacts

Explanation/Others:
__
__
__

Other siting considerations:
__
__
__
What building materials will be used to increase resiliency?

What type of construction will be used (e.g., relocatable, portable, expendable in the event of storm damage)?

Will there be any functional use restrictions placed on the project (e.g., temporary)?

Other design considerations:

Is there adequate shoreline protection at the proposed project’s site?

Explain any additional risk of heightened storm surge due to future sea level rise inundation:

7. **Qualitative Cost/Benefit Analysis.** Provide qualitative assessment of anticipated benefits and costs of the proposed project with the following factors:

 a. **Risk v. Time.** What are the potential future financial and other losses associated with sea level rise inundation, coastal flooding and storm surge over the project’s anticipated design life? How does this cost compare to inaction?
b. **Risk Tolerance.** What is the risk tolerance for the proposed project?
 i. Low _____ ii. Medium _____ iii. High _____

 Explain:
 __
 __
 __
 __
 __

c. **Socioeconomic Considerations.** What are the short- and long-term costs associated with the project?

 i. What costs are associated with the need for additional shoreline protection?
 __
 __
 __
 __
 __

 ii. What types of emergency responses will there be during extreme events?
 __
 __
 __
 __
 __

 iii. What is the possible need for the repair or rebuilding of damaged structures?
 __
 __
 __
 __
 __

d. **Environmental Impacts.** Are there increased impacts of the project to the environment due to the incorporation of resiliency measures (e.g., increasing the height of a bridge may necessitate a need for larger bridge abutments with greater impact to the waterway and nearby wetland areas)?

 __
 __
 __
 __
 __
e. **Cultural Impacts.** Are there increased impacts of the project to cultural resources due to the incorporation of resiliency measures (e.g., increasing the height of a bridge may necessitate a need for larger bridge abutments with greater impact to historic structures or cultural value of the surrounding areas)?