

Environmental Concern Inc.

- Mission improve water quality and enhance habitat by promoting
 - Restoration of wetlands and the construction of new wetlands,
 - Stewardship of wetlands through education and outreach
 - Native species horticulture

Living Shoreline

The Living Shoreline is a wetland (tidal marsh), restored/constructed at the terrestrial/aquatic interface in order to recreate the natural functions of a shoreline ecosystem and to stabilize the bank.

The Living Shoreline design is a specific approach to shoreline stabilization intended to maximize primary productivity - thereby improving water quality and living resource habitat.

Environmental Concern

Rip-Rap-Typical Section

Sand Fill

Stone Groin

Stone Groin

Stone Groin

Biolog

Low Profile Stone Containment Structure

Functions and Values of the Living Shoreline

Shoreline Stabilization

Water Quality

Productivity

Habitat Enhancement

Primary Productivity

Net Primary Productivity of Selected Ecosystems (g/m²/year) adapted from Lieth (1975) and Teal (1969)

Salt Marsh traps silt and pollutants contained in stormwater runoff AND in the receiving waters (Knutson et al. 1982; Tiner and Burke 1995).

Nutrient Removal

- Filtration
- Denitrification
- Uptake & Sequestration

Functions & Values

Shoreline Stabilization:

Results showed that *Spartina alterniflora* marshes significantly reduced wave height and erosional energy.

Wave height was reduced by:

- 50% within the first 5m of marsh
- 95% after crossing 30m of marsh

(Knutson et al. 1982)

Wave Attenuation

The reduction in wave height (wave attenuation) and thus the severity of the impact at the upland bank is a function of :

- Interaction with the bottom
- Interaction with the sill structure
- Interaction with marsh vegetation

Typical wave height

Storm tide

Low Profile Stone Containment Structure

Wave Attenuation

The reduction in wave height (wave attenuation) and thus the severity of the impact at the upland bank is a function of :

- Interaction with the bottom
- Interaction with the sill structure
- Interaction with marsh vegetation

Sill Height is a function of Fetch & Bathymetry

Short Fetch – Shallow Bottom Lower Sill Elevation

Shade reduces health and function of marsh plantings

Bayscape shrubs and warm season grasses do not shade marsh

Native Warm Season Grasses

Benefits:

- •Stabilizes the soil and controls erosion.
- •Reduces sediments, nutrients and other harmful pollutants from runoff entering receiving waters.
- Maintains an area of transitional habitat between aquatic and upland communities
- Provides wildlife habitat.
- •Minimizes adverse effects of human activity on tidal waters and aquatic resources.

Proper Elevation

- •Low Marsh Spartina alterniflora
- •High Marsh Spartina patens
- •Upland (Bayscape) Panicum virgatum, Morella cerifera

Tidal Flushing

Effect of Sea Level Rise on Living Shorelines

Current

Effect of Sea Level Rise on Living Shorelines

+1 foot

Effect of Sea Level Rise on Living Shorelines

+2 feet

DESIGN CONSIDERATIONS

DESIGN CONSIDERATIONS

The reduction in wave height (wave attenuation) and thus the severity of the impact at the upland bank is a function of:

- Interaction with the bottom
- Interaction with the sill structure
 - Interaction with marsh vegetation

Miles Point

Fetch:

4.3 miles NNE

1.0 mile E

3.4 miles SE

Design Width & Bank Height

Middle Section:

- Existing conditions: Erosion is significant.

 Bank height increases to 47.0 MLW. Fetch

 1 mile.
- Design: Sill elevation +2.5' to +3.0' MLW,
 protective marsh constructed to 90 100 ft
 channelward from the existing bank.

Design Width & Bank Height

- Existing conditions: Severe erosion, Bank height +8.0' MLW on average. Fetch is 4.3 miles.
- Design: Sill elevation +3.0' to +3.8' MLW, protective marsh constructed to 100 110 ft channelward from the existing bank.

PLATE 2a - Revision Shoreline Stabilization & Buffer Management

Aberdeen Creek

