Ecological attributes and trade-offs of living shorelines

Donna Marie Bilkovic* and Molly Mitchell
Center for Coastal Resources Management
Virginia Institute of Marine Science

Mid-Atlantic Living Shorelines Summit
10-11 December 2013

*donnab@vims.edu
http://ccrm.vims.edu
Continuum of shoreline protection approaches

Estuarine & coastal shorelines
- Eastern Shore: The Virginia Coast Reserve
- Tabbs Creek, VA

Minimally-Moderately altered
- Created marsh
- Oyster-sill
- Marsh-sill
- Breakwater-beach

Highly altered
- Bulkhead
- Riprap Revetment
Ecosystem services of tidal marsh, flats, beaches, and shallows

- **Habitat provision** (feeding & refuge) – shore, wading, and marsh birds, reptiles, fish, & benthic invertebrates
- **Nesting habitat** for turtles (**beaches**)
- **SAV habitat** (**shallows**)
- **High primary production** by benthic algae, marsh, seagrass
- **Nutrient Processing** (uptake/cycling)
- **Decomposition of organic matter**
- **Secondary productivity transferred**
- **Wave attenuation** (**marsh, beach**)
- **Sediment stabilization** (**marsh, beach**)
- **Biodiversity**
Shoreline hardening & riparian development impacts on ecosystem services

- **Habitat loss & fragmentation** – Forest, wetlands (Peterson and Lowe 2009; Dugan et al 2011)
- **Connections btw upland & wetland severed**
- **Sediment supply & transport altered, increased scouring, turbidity** (Bozek and Burdick 2005, NRC 2007)
- **Static homogeneous shoreline, less biodiversity**
- **Increase in invasive spp** (Chambers et al 1999)
- **Prevents the natural migration of habitats as sea level rises**
Research Question: What are the implications for converting existing habitat to a LS?

-Are Living Shls enhancing habitat AND does this habitat persist?

- Multiple living shoreline types & designs
 - Hard to find replicates to conduct rigorous research

BUT, There have been advances in our knowledge since the last LS Summit...

Ecological tradeoff: conversion of nonvegetated wetlands and shallow subtidal bottom to marsh-sill
Evidence that well-designed marsh-sills are better than armoring

- Immediate terrestrial-aquatic connection not disrupted if rock is properly sized and placed offshore
- Intertidal is maintained – fish, crabs & their prey present
- Established planted marsh often provides equivalent production as natural marsh in time
Marsh-sils may be following created wetland trajectories of ecosystem development

Vegetation: Evidence that plants develop faster (within 2-3 yrs) than biogeochemical processes (OM, nutrient accumulation) & benthic infauna (> 10 yrs)

<table>
<thead>
<tr>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA/MD</td>
<td>Bilkovic & Mitchell 2013</td>
</tr>
<tr>
<td>VA</td>
<td>Havens et al 1995</td>
</tr>
<tr>
<td>VA</td>
<td>Mitchell unpubl</td>
</tr>
<tr>
<td>SC</td>
<td>LaSalle et al 1991</td>
</tr>
<tr>
<td>VA</td>
<td>Priest 1989</td>
</tr>
<tr>
<td>TX</td>
<td>Webb & Newling 1985</td>
</tr>
<tr>
<td>VA</td>
<td>Hardaway et al 1984</td>
</tr>
<tr>
<td>NC</td>
<td>Wong et al 2011</td>
</tr>
<tr>
<td>NC</td>
<td>Currin et al 2008</td>
</tr>
<tr>
<td>VA</td>
<td>Bilkovic unpubl</td>
</tr>
</tbody>
</table>

S. alterniflora density (# stems/m²)

- Marsh-sills: 70 - 332
- Fringe marsh: 32 - 574

Ave = 200 **Ave = 188**
Sediment characteristics – Organic matter lagging

Generally, marsh-sill sediments coarser, and TOC & TN lower than in natural marshes.
Benthic assemblages differ in marsh-sills from natural marsh

Important changes in benthic invertebrate communities (fish prey) in marsh-sills

- High abundance of filter-feeding epibiota at some but not all sites
- Less diverse in intertidal, but most ecological roles were filled
- Evidence of a relatively short recovery time for benthos following marsh-sill construction
- Offshore similar among shorelines

Marsh-sill benthic assemblages

Ecosystem Service providers

- **Infaunal Deposit feeders** - ingest sediment & digest associated bacteria, microalgae & organic matter
 - Bioturbation of sediment – increase oxygenation & nutrient cycling

- **Suspension/filter feeders** - feed on algae & detrital particles suspended in the water
 - Filter water, improve clarity

Clymenella torquata
- Bamboo worm

Tagelus plebeius
- Stout Razor Clam

Oysters & mussels-sill

mussels – marsh

Credit: Chris Dungan
Colonization of macroalgae and epibiota on rock-filter-feeders: barnacles, mussel spp, oysters

High infauna diversity in intertidal
Filter and deposit feeders, carnivores, omnivores
High ribbed mussel density

Moderate infauna diversity in intertidal
Reduction of benthic algae behind sills
Colonization of macroalgae and epibiota on rock-filter-feeders: barnacles, mussel spp, oysters

No/Low infauna
Intertidal covered

O’Connor et al 2011; Wong et al. 2011; Bilkovic & Mitchell 2013
Filter-feeding oysters and mussels typically observed in lower densities in hybrid living shorelines than natural marshes or reefs.

~50-100 oysters/m² = productive reef
Some sills & breakwaters productive, some are not

Marsh-sills and breakwaters support much lower densities of ribbed mussels than natural marshes.
Implications of introducing artificial rock structure to soft-bottom vs hard-bottom systems

Artificial rock structures not equivalent to rocky shores or natural reefs

- Colonizing epifauna and fish assemblages different from natural rocky shoreline assemblages (*Chapman 2003, Moschella et al 2005, Bulleri & Chapman 2010*)
- Less diverse and abundant possibly due to less structural complexity and higher disturbance than natural shorelines
- Other functions provided by natural reefs may not be provided by rock substrate (habitat for reef resident finfish, nutrient cycling, benthic-pelagic coupling)

Anthropogenic dispersal mechanism?: The introduction of artificial rocky shorelines may enhance recruitment & dispersal of species that are normally limited by availability of suitable substrate including native, non-native, & invasive species (*Davis et al 2002, Airoldi & Bulleri 2011, Mineur et al 2012*)

Many Research Questions remain unanswered....
Nekton assemblages & productivity depend on availability of suitable habitat

Compelling evidence that nekton assemblages are less diverse at armored shorelines compared to natural marshes & nekton utilization increases when armored shorelines are converted to living shorelines (diversity & density)

Assumed energy transfer to higher trophic levels has not been verified
- The role that living shorelines may play as fish and shellfish nursery habitat has not yet been measured. We need to demonstrate enhanced growth and protection from predation compared to other habitats (*work in progress*)

Persistent aquatic environment seaward from marsh edge may be essential
- *Sediment accretion landward of living shoreline structures may limit suitable habitat over time*

Davis et al 2008; Hardaway et al 2007, Seitz et al. 2006, Bilkovic & Roggero 2008...
A few take homes

Recent research suggests that a marsh-sill may be viewed as providing a net positive ecological benefit when

1) the only alternative is traditional hardening (bulkhead, riprap)
2) the sill is likely to be colonized by filter-feeding epibiota, and/or
3) the sill footprint can be minimized & shallow water habitat maintained

Alternatively, a marsh-sill should be viewed more negatively in situations where the sill unnecessarily or extensively replaces existing habitat

RESEARCH NEEDS

- Improved understanding of implications of introducing artificial rock structure to soft-bottom systems
- Better characterization of the existing habitat converted to LS to more accurately predict ecological benefits that may be gained
- Broader landscape level considerations -- preserve shoreline diversity

THANK YOU!