POPULATION AND PRODUCTIVITY SURVEYS OF

 GREATER SNOW GEESE IN 2022

Réservoir Beaudet, Victoriaville, Québec
Photo: Christian Marcotte

A REPORT TO THE USFWS AND THE ATLANTIC FLYWAY TECHNICAL SECTION, February 2023

By:
Josée Lefebvre,
Canadian Wildlife Service

Pierre Legagneux, Marie-Christine Cadieux and Gilles Gauthier, Université Laval

SPRING POPULATION SURVEY

The annual photographic survey of the Greater Snow Goose population on the spring staging grounds was conducted in spring 2022 after two years of suspension due to the COVID pandemic. A brief description of the survey methodology and the sampling procedure for photographic counts are given in Reed et al. (1998) and Calvert et al. (2007).

The survey was carried out on May $1^{\text {st }}$ in southern Québec (including east of Ontario and north of New Brunswick) during optimal conditions. Each aircraft surveyed an area of the St. Lawrence River, its surrounding agricultural lands and major tributaries (Figure 1). The whole area was surveyed on the same day by five different aircraft. For 2022, the estimate of the size of the photographed spring population was $753,000 \pm 29,000$ geese (Figure 2; Appendix A). The population estimate is just above the population objective and about 5% higher than the 2019 estimate ($714,000 \pm 84,000$), although there was some overlap between the confidence intervals for 2019 and 2022. Also, the productivity in 2022 was poor with only 3% of recruitment in the fall productivity survey, the second lowest since the implementation of the special measures in Canada which indicate a widespread breeding failure for this population.

NESTING AREA -BYLOT ISLAND

Nesting success (37\%; proportion of nests hatching at least one egg) was very low and well below to the long-term average (Table 1). This was largely due to a relatively high activity of Arctic Foxes and avian predators around goose nests, which destroyed more nests than in normal years. Peak hatch was on 12 July, which is 3 days later than the long-term average (Table 1). Overall, nesting parameters of geese in 2022 were lower than normal.

BANDING - BYLOT ISLAND

From 9 to 15 August, we banded geese with the assistance of a helicopter. Goose flocks were rounded up and driven by people on foot into a holding pen made of plastic netting. All captured geese were sexed and banded with a metal band, and all recaptures (web-tagged or leg-banded birds) were recorded. A sample of young and adults was measured (body mass and length of culmen, head, tarsus and 9th primary).

The banding operation was difficult this year because we lost seven days due to bad weather and mechanical problems with the helicopter. We conducted only 5 drives between the Camp 2 area and the Qarlikturvik Valley. We banded a total of 662 geese, including 34 young that had been marked with webtags at hatch. In addition, we recaptured 46 adults that were banded in previous years. The young:adult ratio among geese captured at banding ($0.53: 1$) was much lower than last year and well below the longterm average (Table 1). Mean brood size toward the end of brood rearing (2.28 young, $n=111$; counts conducted between 31 July and 12 August) was also below the long-term average. By combining information on brood size and young:adult ratio at banding, we estimated that only 47% of the adults captured were accompanied by young, a very low value (Table 1). Overall, these results are indicative of a very low production of young on Bylot Island by the end of the summer.

Figure 1. Map illustrating the five sectors surveyed for Greater Snow Geese in 2022.

Figure 2. Estimated population size of the Greater Snow Goose, 1965-2022. The black dashed line indicates the start of special conservation measures in Canada, the red dotted one the Conservation Order in United States.

Table 1. Productivity data of Greater Snow Geese nesting on Bylot Island, Nunavut over the past decade.

| | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Averag
 e^{1} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nest success | 67% | 91% | 77% | 73% | 56% | 50% | 82% | 64% | -- | 37 | 66 |
| Median date
 of hatching | 10 July | 8 July | 9 July | 9 July | 8 July | 11 July | 4 July | 11 July ${ }^{2}$ | 10 July 2 | 12 July | 9 July |
| Number of
 geese banded | 4865 | 2001 | 3675 | 4357 | 3216 | 2951 | 2985 | -- | 2160 | $\mathbf{6 6 2}$ | |

FALL PRODUCTIVITY COUNTS

The proportion of juveniles measured during family counts in fall flight conducted in southern Québec was 3%, the second lowest proportion of juveniles since the implementation of the since special measures In Canada (Figure 3; Appendix A).

The very low proportion of young recorded in fall suggests which indicate a widespread breeding failure for this population in the High-Arctic this year.

ACKNOWLEDGEMENTS

The spring survey was conducted by Benoit Audet ${ }^{2}$, Charles Clavet ${ }^{3}$, Arnaud Delvaux ${ }^{1}$, Mark Dionne ${ }^{1}$, Bruno Drolet ${ }^{1}$, Stéphanie Gagnon ${ }^{1}$, Claudine Genest, Jack Hughes ${ }^{1}$ and Francis St-Pierre ${ }^{2}$, Mathieu Tétreault ${ }^{1}$ Our pilots were Jean Gosselin, David Giroux, Louis Normand, Simon Renaud from Air Montmagny and Steve Small from Cornwall Aviation.

Members of Bylot field party included Marie-Christine Cadieux ${ }^{4}$, Pierre Legagneux ${ }^{3}$, Josée Lefebvre ${ }^{1}$, Christian Marcotte ${ }^{1}$, Simon Bourbeau ${ }^{1}$ and several graduate and undergraduate students.

[^0]

Figure 3. Productivity counts in the fall flight in Québec, 1973-2022. The black line indicates the longterm proportion of juveniles, the black dashed one, special conservation measures implementation in Canada and the red dotted one indicates the implementation of the Conservation Order in the United States.

REFERENCES

Calvert, A. M., G. Gauthier, Eric T. Reed, L. Bélanger, J.-F. Giroux, J.-F. Gobeil, M. Huang, J. Lefebvre and A. Reed. 2007. Present status of the population and evaluation of the effects of the special conservation measures. Pages $5-64$ in Reed, E.T. and A.M. Calvert (eds.). Evaluation of the special conservation measures for Greater Snow Geese: Report of the Greater Snow Goose Working Group. Arctic Goose Joint Venture Special Publication. Canadian Wildlife Service, Sainte-Foy, Québec.

Reed, A., J.-F. Giroux and G. Gauthier. 1998. Population size, productivity, harvest and distribution. Pp. 5-31 in The Greater Snow Goose: report of the Arctic Goose Habitat Working Group, B.D.J. Batt ed. Arctic Goose Joint Venture Special Publication. U. S. Fish and Wildlife Service, Washington D.C., and Canadian Wildlife Service, Ottawa, Ontario.

APPENDIX A. Greater Snow Goose Population and productivity estimates from southern Québec, 19962022.

Year	Estimated spring Population ${ }^{1}$	Percentage of young during fall flight ${ }^{2}$		Brood size ${ }^{3}$ during fall	
		Mean	No. geese	Mean	No. broods
1965	25400				
1966	25400				
1967	40900				
1968	38900				
1969	68800				
1970	89600				
1971	123300				
1972	134800				
1973	143000	41	800	2.94	49
1974	165000	6	7282	2.19	119
1975	153800	31	17579	2.71	1294
1976	165600	13	20847	2.46	419
1977	160000	24	10297	2.28	396
1978	192600	18	9679	2.34	309
1979	170100	28	20849	2.65	1226
1980	180000	35	12120	2.76	651
1981	170800	16	10683	2.30	229
1982	163000	25	9577	2.48	661
1983	185000	47	12353	2.86	1246
1984	225400	30	39781	2.63	2434
1985	260000	26	33700	2.49	1682
1986	303500	2	22998	1.89	74
1987	255000	40	33278	2.77	1882
1988	363800^{4}	33	40246	2.76	2444
1989	363200	31	29191	2.59	2014
1990	368300	24	20313	2.54	830
1991	352600	38	15102	2.69	1247
1992	448100	5	32252	2.06	404
1993	498400	48	24163	2.75	2743
1994	591400	9	16444	2.44	242
1995	616600	17	19519	2.47	665
1996	669100	25	22595	2.34	1247
1997	657500	37	17586	2.69	1222
1998	$(836600)^{5} 741200$	33	17982	2.52	144

[^1]| 1999 | $(1008000)^{5}$ | 803400 | 2 | 20394 | 2.09 | 91 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | $(816500)^{5}$ | 577300 | 23 | 20468 | 2.54 | 1302 |
| 2001 | | 837400 | 28 | 22106 | 2.36 | 1072 |
| 2002 | | 725000 | 6 | 18930 | 1.91 | 274 |
| 2003 | | 678000 | 27 | 15900 | 2.36 | 1092 |
| 2004 | | 957600 | 18 | 26206 | 2.44 | 1031 |
| 2005 | | 814600 | 21 | 29022 | 2.38 | 1470 |
| 2006 | | 1017000 | 20 | 23338 | 2.34 | 1143 |
| 2007 | | 1019000 | 21 | 25453 | 2.28 | 1371 |
| 2008 | | 718000 | 40 | 32020 | 2.62 | 3188 |
| 2009 | | 1009000 | 11 | 28969 | 2.08 | 753 |
| 2010 | | 824000 | 20 | 27030 | 2.26 | 1533 |
| 2011 | | 917000 | 30 | 31719 | 2.42 | 2291 |
| 2012 | | 1005000 | 15 | 25822 | 2.19 | 834 |
| 2013 | | 921000 | 10 | 31749 | 1.86 | 693 |
| 2014 | | 796000 | 22 | 28233 | 2.15 | 1893 |
| 2015 | | 818000 | 16 | 25672 | 1.94 | 997 |
| 2016 | | 915000 | 18 | 27886 | 2.14 | 1245 |
| 2017 | | 747000 | 20 | 23193 | 2.20 | 1335 |
| 2018 | | 877000 | 5 | 27955 | 1.94 | 317 |
| 2019 | | 714000 | 32 | 23053 | 2.50 | 1743 |
| 2020 | | - | 16 | 21390 | 2.28 | 947 |
| 2021 | | - | 21 | 24476 | 2.50 | 1202 |
| 2022 | | 753000 | 3 | 24240 | 1.85 | 177 |
| 1973-1998 | | - | 26 | - | 2.52 | - |
| 1999-2008 | | - | 20 | - | 2.33 | - |
| 2009-2022 | | - | 17 | - | 2.15 | - |

[^0]: ${ }^{1}$ Period 1989-2019
 ${ }^{2}$ Canadian Wildlife Service
 ${ }^{3}$ Oiseleurs
 ${ }^{4}$ Université Laval

[^1]: ${ }^{1}$ from aerial photo counts
 ${ }^{2}$ from visual ground counts
 ${ }^{3}$ broods accompanied by 2 parents
 ${ }^{4}$ no spring survey conducted; a population model was used (Gauvin \& Reed 1987)
 ${ }^{5}$ estimates in brackets have been corrected to account for flocks not observed during the survey, using data from a telemetry study.

