Restoring the Bay: The Land-Water Connection

The Patuxent River, like other tributaries to the Chesapeake Bay, is degraded by nutrient and sediment pollution harming aquatic life. Excess nutrients and sediments are the primary sources of pollution in the Chesapeake Bay. Nutrients occur naturally in soil, animal waste, plants, and the atmosphere; but in the Chesapeake Bay watershed, urbanization and farming have increased nutrient loads to unhealthy levels. These nutrients – nitrogen and phosphorus – promote the growth of algae, which in turn, blocks sunlight from reaching underwater grasses and reduces dissolved oxygen and suitable habitat for aquatic life.

The Patuxent River

The Patuxent River drains about 900 miles of land in portions of St. Mary’s, Calvert, Charles, Anne Arundel, Prince George’s, Howard, and Montgomery Counties. The Patuxent is the largest river completely in Maryland. Large water bodies include the Western Branch, Little and Middle Patuxent Rivers, and two large water supply reservoirs on the mainstem river above Laurel, which supply water for the Washington metropolitan area.

The Patuxent River, along with all tributary basins in the Chesapeake, contribute to and are impacted by nutrient pollution. Nutrient pollution can be divided into two major categories – point sources (pollution that comes from a single, definable location, such as a wastewater treatment plant or industrial discharge) and nonpoint sources (pollution that cannot be attributed to a clearly identifiable, specific physical location, such as runoff from land and atmospheric deposition). Runoff from different land uses, point sources, and atmospheric deposition are the major sources of nutrients within the Bay watershed.

In the Patuxent River basin, land use is very mixed, and consists of high density and low density development and agriculture lands. While forests and wetlands are also a land use, they release few nutrients to rivers and the Bay. Baywide, approximately 33% of nitrogen loads come from atmospheric sources, however, that varies from basin to basin and is included in land based loads.

Because of the developed nature of the Patuxent River, urban non-point and point sources both account for approximately one-third of the nitrogen and phosphorus, while agriculture contributes roughly one fifth of the nutrients. The nutrient loading from these sources threaten to increase with population growth. Population in the Patuxent River has increased by 136% between 1970 and 2000, and is projected to grow by another 22% by 2020.

A Work in Progress

Maryland has been working since the first Chesapeake Bay Agreement was signed in 1983 to reduce nutrient pollution to the Chesapeake Bay. Since 1985, wastewater treatment plants, farmers, and others have achieved significant nitrogen and phosphorus reductions. Nitrogen loads in the Patuxent River basin have been reduced 19% from 5.02 to 4.07 million pounds a year since 1985, and phosphorus loads have been reduced 47% from .51 to .27 million pounds.

Patuxent River Basin Nutrient Goals

NITROGEN

- **Agriculture**
- **Mixed Open**
- **Point Sources**
- **Resource Lands**
- **Septics**
- **Urban NPS**
- **Cap**

PHOSPHORUS

- **Agriculture**
- **Mixed Open**
- **Point Sources**
- **Resource Lands**
- **Septics**
- **Urban NPS**
- **Cap**

Updated 2002 Progress information available soon.
Large portions of these reductions were achieved through point source reductions and agricultural best management practices (BMPs). These BMPs are practices that provide the most effective and practicable means of controlling pollutants, such as nutrient management or cover crops. In the Patuxent River basin, nitrogen loads from agriculture dropped 45% and phosphorus decreased 48%, while nitrogen and phosphorus point source contributions dropped 36% and 68%, respectively. Nitrogen loading from septic systems increased by 44% between 1985 and 2000 and could increase due to growth patterns in the basin.

Goals for a Healthy Bay

In 2000, the Chesapeake Bay Program partners – Maryland, Virginia, Pennsylvania, the District of Columbia, the U.S. Environmental Protection Agency, and the Chesapeake Bay Commission – signed *Chesapeake 2000*, a new agreement designed to protect and restore living resources, vital habitats, and water quality in the Bay and its watershed. Key parts of this agreement include developing new nutrient and sediment goals for the Bay and its tidal tributaries based on the needs of living resources and revising the Tributary Strategies to achieve these new goals.

In the spring of 2003, the Chesapeake Bay Program finished developing water quality criteria that identify the levels of dissolved oxygen, water clarity, and chlorophyll (algae) that are needed to support healthy populations of Bay living resources. The Chesapeake Bay Program used computer models to estimate the amount of nitrogen and phosphorus loads (also called loading caps) that can enter the Bay while achieving these water quality criteria. These loads were allocated to each tributary basin and state. As a result, each basin will have nutrient reductions to be achieved in order to reach their nutrient loading cap.

Water Quality

Monitoring data for the Patuxent River show trends from 1985 - 2000. Nitrogen and phosphorus levels improved in most of the basin, due in part to improvements in wastewater treatment (Biological Nutrient Removal-BNR)) and to the phosphate ban in Maryland in 1985. In spite of these nutrient reductions, phosphorus and algal levels remain poor (high) in many areas, indicating that further reductions are needed.

The Patuxent is shifting from a point-source-dominated system to a non-point-source-dominated system. Due to this change, many of the future improvements may need to come from non-point source improvements, which will be a challenge.

Living Resources in the Patuxent River

The Patuxent River watershed provides habitat for many species of aquatic and terrestrial life. The watershed supports more than 100 species of fish in its freshwater streams and brackish waters, including largemouth bass, chain pickerel, catfish, weakfish and bluefish. The Patuxent also supports an important commercial and recreational blue crab fishery.
Local Benefits
By addressing nutrient and sediment pollution in the Patuxent River basin there will be advantages to both local and downstream areas. The overall result will be a decrease in algal production that will aid in the return of underwater grasses and improved habitat.

For nontidal areas, the Maryland Biological Stream Survey (MBSS) provides a picture of overall ecological stream health (since 1995 in this basin). Data, such as measures of the variety of species, pollution sensitivity, and proportion of exotic species, are collected for each stream. These data are combined into one overall value, or index of health, for the streams in the Patuxent River watershed, which is referred to as an Index of Biotic Integrity (IBI). By using this index, complex ecological information, stream health can be rated as good, fair, poor, or very poor. Streams rated good or fair by the index are considered healthy compared to reference streams, while streams rated poor or very poor are considered unhealthy.

In the Patuxent River, most of the monitoring sites were rated as having a fair Index of Biotic Integrity scores. The riparian buffers in the Patuxent basin are in fairly good condition, although the basin stream banks are suffering. As lands within the basin were developed for agriculture and later urbanized, many miles of stream banks became highly eroded.

At present there are at least 4 fish species in the basin that are at risk of local extinction, including american brook lamprey, glassy darter, stripeback darter, and warmouth. Addressing the quality of the streams will translate into local habitat quality and contribute to the support of such critical natural resources to the Bay. Healthy local streams and rivers will not just serve as a recreational asset to the local community but often translates into an increased quality of life and local economic benefits.

Downstream Benefits
Restoration efforts in the Patuxent River will be felt elsewhere. By achieving our nutrient goals, and addressing sediment in the Patuxent River, we expect to see decreased algal production downstream, better habitat and a resurgence of underwater grasses. The following is a description of living resource challenges and goals for the mainstem and tidal areas of the Chesapeake Bay Watershed.

Bay Grasses
Underwater grasses, or submerged aquatic vegetation, play an important ecological role to the Chesapeake Bay environment. They provide food, refuge and nursery habitat for many waterfowl, fish, shellfish and invertebrates, and produce oxygen in the water column. These grasses also filter and trap sediment that cloud the water and bury bottom-dwelling organisms, such as oysters; provide shoreline erosion protection by slowing down wave action; and remove excess nutrients that could fuel unwanted growth of algae in the surrounding waters.

Submerged aquatic vegetation had largely vanished in the Bay by the 1970s, primarily due to poor water quality. Over the past decade, improvements in water quality have led to a modest resurgence in underwater grasses in some parts of the Bay. In 2000, underwater grasses covered about 69,000 acres in the Bay. In 2003, the Chesapeake Bay Program set a new goal for underwater grasses of 185,000 acres Baywide. This was based in part on the amount of grasses that would return once we achieve the new nutrient reduction goal.

Blue Crabs
The blue crab is one of the most important species harvested in the Bay. It has the highest value of any commercial fishery and supports a recreational fishery of significant, but undetermined, value. Due to loss of habitat and harvest pressure, however, the abundance of mature female crabs is at near historic lows. The Chesapeake 2000 Agreement calls for the Bay partners to “manage the blue crab fishery to restore a healthy spawning biomass, size, and age structure.” To achieve this, Maryland and Virginia have committed to reduce harvest pressure on blue crabs by 15% compared to the harvests of 1997 through 1999.

Restoring underwater grasses will be an important step in restoring blue crab populations. During the 1970s and 1980s, the widespread disappearance of underwater grasses resulted in a severe loss of important crab habitat and nursery areas, primarily for females and crabs in the molting stage. Bay scientists have found that 30 times more juvenile crabs were found in areas with Bay grasses than in areas without.
Oysters
Over-harvesting, dwindling habitat, pollution, and diseases (such as Dermo and MSX) have caused a severe decline in oysters throughout the Chesapeake Bay over the last century. Since the 1950s, harvests have fallen Baywide from 35 million pounds to below 3 million pounds. In addition to their fisheries value, oysters are critical to the Bay’s ecosystem. They provide habitat for many Bay species and help improve water clarity by filtering algae and sediment from the water.

The Chesapeake 2000 Agreement commits to increasing native oysters tenfold by 2010. The Oyster Restoration Strategy, which was developed to support the agreement, focuses on rehabilitating oyster habitat, much of which is degraded by silt and nearly barren. In addition to improving habitat, the strategy aims to increase the oyster population by the construction of a Baywide network of non-harvest sanctuary areas. Up to 250 such areas have been suggested throughout the Bay so far. Protected from harvesting, it is hoped that some of the oysters in these sanctuaries will survive disease and enhance the Bay’s oyster population.

In the Patuxent River, numerous restoration projects are underway. Oyster sanctuaries in the Patuxent River are found at Elbow/Teague, Trent Hall, Kitts Marsh, Neal Addition and Point Patience. The Broadneck area is designated as an oyster reserve.

Many natural bars exist throughout the river, but they have been impacted by silt and disease. Mortality tends to be lower up river than down river and is primarily due to oyster disease for most of the river, but can be from fresh water in deluges. Very little harvest occurs in the Patuxent, though this was once a major river for oyster production.

Tools for Change
Maryland’s Tributary Teams are leading the revision of their Tributary Strategies - watershed-based plans to achieve the nutrient and sediment goals within each of the state’s 10 tributary basins. Restoring the Patuxent will require the active involvement of all watershed residents. Strategies for the Patuxent will be drawn from an array of measures to reduce the amounts of nutrients from wastewater treatment plants and agricultural, urban, and suburban lands. Protection of forests and wetlands will help prevent increases in nitrogen and phosphorus loads.

The Next Steps
Over the coming months, the Patuxent River Commission and Maryland’s Departments of Natural Resources, Environment, Agriculture, and Planning will work closely with residents of the basin to identify best management practices that can be applied in the watershed to reduce nutrient pollution and restore habitat.

Produced by the Maryland Department of Natural Resources with funds from the Environmental Protection Agency, Chesapeake Bay Program. This document does not necessarily reflect the opinion of the EPA. Printed on recycled paper.