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Abstract—Earth Observing 1 (EO-1) Hyperion and Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) imagery were
vsed to predict canopy nitrogen (N) concentration for mixed oak
farests of Green Ridge State Forest in Maryland. Nitrogen con-
centration was estimated for 27 ground plots using leaf samples of
the dominant tree species from each plot that were dried, ground
and analyzed in the laboratory for foliar N concentration. Foliar
N data were composited based on relative species composition to
determine overall canepy N concentration for the plot, Hyperion
and AVIRIS jmages were converted to surface reflectance and
related to canopy N using partial least squares (PLS) regression
of first-derivative reflectance for wavelengths reported in the
literature to be associated with N absorption features. The PLS
model for Hyperion employed four factors and accounted for
97.8% of the variation in N concentrations and 40.4% of the
variation in the spectral data whereas the AVIRIS model used
three factors accounting for 84.9% of the variation in N and
72.4% of the variation in the spectral informatien. In the aren of
overlap between the AVIRIS and Hyperion images, > 70% of
the estimates from the two sensors were within 0.25%N of each
other, indicating a very close fit between the models penerated
using data from Hyperion and AVIRIS. This research indicates
the applicability of hyperspectral data in general and Hyperion
data in particular for mapping canopy nitrogen concentration.

Index Terms—Airborne Visible/Infrared Imaging Spectrometer
{AVIRIS), Appalachian mountains, canopy nlfrogen concentra-
tion, Hyperion, oak forests.

1. INTRODUCTION

NE OF THE GREAT promises of imaging spectroscopy

(hyperspeciral remote sensing) has been the potential for
mapping nutrient concentrations in vegetation canopies [1]-[6].
Measurements of foliar biochemicals are important because
they provide crucial information that allows the assessment of
nutrient cycling, gas exchange, and plant productivity that are
necessary for evaluating ecosystem functioning [7], [8]. Ni-
trogen in particular is an important indicator of photosynthetic
and growth rates, and in areas such as the central Appalachian
Mountains where atmospheric nitrogen deposition rates are
high, the canopy N concentrations can indicate the potential
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for forests to utilize excess N for increased growth and carbon
storage or alternately as a buffer against nitrogen saturation and
leakage to surface waters [9]-[14]. Remote estimation provides
the opportunity to make such measurements cost-effective over
large areas.

The use of imaging spectroscopy to estimate foliar biochem-
ical composition has been discussed extensively in the litera-
ture [1]-[8], [15]-[19], and is generally premised on the idea
that radiance/reflectance spectra from vegetation canopies ex-
hibit characteristic absorption features resulting from the vi-
bration and bending of molecular organic bonds of carbon, ni-
trogen, hydrogen and oxygen within plants at shortwave infrared
wavelengths and from electron transitions related to chlorophyll
concentration in visible wavelengths [20], [21]. The objective
of this paper is to test the capability of Hyperion, the imaging
spectrometer aboard the Earth Cbserving 1 (EQ-1) satellite, to
map canopy nitrogen concentration for deciduous oak forests in
the mountains of western Maryland, and to compare the results
from those analyses with estimation made using the Airbome
Visible/Infrared Imaging Spectrometer (AVIRIS).

[1. METHODS

A. Study Area

This study took place in a 25000-ha region of the Green
Ridge State Forest in western Maryland and adjacent Buchanan
State Forest in Pennsylvania (Fig. 1). The area is located within
the Ridge and Valley Province of the central Appalachian Moun-
tains within an elevation range of 300-700 m. The vegetation is
dominated by deciduous oaks in the canopy with varying un-
derstory species (Table I). The forests are even-aged (75-100
years) [22] and largely continuous with full-canopy closure de-
spite modest variations in leaf area. The site is the location of
several studies focusing on the effects of forest vertical struc-
ture on biodiversity as well as the consequences of repeated
gypsy moth defoliation on ecosystem functioning and nutrient
retention. A variety of remote sensing data as weli as field mea-
surements on forest structure (leaf area index, basal area, forest
height), species composition, and ecosystem attributes (canopy
and soil nutrients) were available from other studies (Table I).
We used data from 27 existing plots for this research. Due to
slight differences in Hyperion and AVIRIS coverage as well as
cloud cover, 20 plots were used for the Hyperion analyses, 17
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Fig. I. Location of green ridge state forest, Maryland.
for AVIRIS, with ten plots included in both AVIRIS and Hype-
rion scenes (Table I).

B. Foliar Chemistry Data Collection and Analysis

All ficld plots had been previously sampled for species
composition and forest structure. We used a variable-area
sampling design suitable for integration with 30-m satellite
data (described in detail in [23]; see also [24]}, in which mea-
surements of basal arca by species, canopy cover by species
and canopy heights (using a laser altimeter) were measured in
an area slightly larger than 60 x 60 m. For this research, we
collected green leaf samples from the central 30 x 30 m area of
the plot between July 16-25, which was within 12 days of the
AVIRIS overflight (July 13,2001} and the Hyperion acquisition
(July 24, 2001). At or near the time of leaf acquisition, we col-
lected hemispherical photographs using a Nikon Coolpix digital
camera (four to 20 per plot) that were analyzed using previously
established procedures [25], [26] to determine the single-sided
leaf area index (square meter per square meter) of the plot
around the time of the image acquisition (Table I). Green leaf
samples were collected using a shotgun from multiple trees
per plot, usually two to three samples from all dominants or
codominants and one sample from prominent subdominants
and understory species. Leaf samples were composited by tree
(following the general approach of [7]), dried to constant mass
(70 °C), ground to #20 mesh in a Wiley Mil), stirred well, and
subsampled (200 mg) for further grinding to #60 mesh. These
were again dried to 70 °C and cooled in a laboratory desiccator
until chemical analysis by dry combustion on a Carlo-Erba NC
2100 Analyzer. Sample sizes for analysis were approximately
10 mg. We performed dry weight corrections (105 °C) on all N
concentration results using an empirical correction coefficient
derived for similar forests in the central Appalachian region,
and report the results here on a dry weight, ash-included basis.
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Total canopy N concentration for each field plot was estimated
by weighting the foliar N estimate for each species on the plot
by its relative basal area (Table I). For plots in which a species
was present but not sampled, a regional mean for the species
was employed (Table II). In the remainder of the paper, we
report canopy N concentration as a percentage representing
grams N per gram ash-included dry weight.

C. Remote Sensing Data

The Hyperion image was acquired by EOQ-1 on 24 July 2001,
while the high altitude AVIRIS image was acquired on 13
July 2001 from the ER-2 aircraft flying at an altitude of 20
km. Hyperion has a spatial resolution of 30 m and covers a
swath 256 pixels wide (7.68 km) x 180 km long. Hyperion
measures 221 bands at approximately 10-nm intervals from
356-2577 nm. High altitude AVIRIS pixels have approxi-
mately 17-20-m spatial resolution and 224 bands at 10-nm
intervals between 374-2508 nm. Green Ridge is covered by
one AVIRIS flight line of 614 pixels (10.5) km. All image
data were received with pixel values calibrated to radiance.
For the Hyperion images, we developed a destriping algorithm
in IDL to reduce the effects of random column-to-column
noise in the spectral data resulting from the “pushbroom”
(rather than “whiskbroom”) design [27]. For each column in a
band of the image, reflectance spectra were adjusted to make
the column mean and variance match the image mean and
variance {41]. Cloud/shadow and nonforest were masked for
the generation of statistics during the destriping routine. For
the AVIRIS image, we also applied an additional correction
to reduce the effects of a cross-track view-angle dependent
brightness gradient, also with cloud/shadow and nonforest
masked. This gradient of increasing brightness on one side of
the image results from the AVIRIS scan angle and direction,
flight path orientation and solar azimuth, and was corrected
by fitting a first-order additive quadratic curve to the mean
radiance by view angle [28]. We used the atmospheric removal
program of Gao et al. (Atmosphere Removal (ATREM) version
3.1) [29] to determine atmospheric water vapor content and
then convert radiance values to ground reflectance estimates.
Images were georeferenced using a triangulation method
(AVIRIS) or second-order polynomials (Hyperion) and nearest
neighbor resampling for > 70 ground control points per scene.
Reflectance spectra were acquired for pixels within a radius of
approximately 35 m around the center point of the field plots
and averaged to estimate average reflectance for each field
site. Analyses employed reflectance spectra (following [7])
although absorbance, calculaied as 4 = log(1/R), has been
used in numerous studies in the literature [21], [30].

D. Statistical Methods

We modeled canopy N concentration for a plot as an em-
pirical function of image spectra. The independent variables
were first-derivative reflectance spectra (as opposed to raw
refleclance values), calculated for a given wavelength as the
difference in smoothed reflectance (30-nm average) between
bands 10 nm on either side of the given wavelength. The use
of first-derivative spectra provided a surrogate for identifying
the actual absorbance features that form the physical basis for
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TABLE [
SPECIES COMPOSITION AND STAND INFORMATION FOR FIELD PLOTS USED IN THE RESEARCH

Reldive Imporicnce of Dominant 5 pedes

ConoyN LAl Bad Aea  White Chestnut Black  Red ' Suga  White  Virgnia
PlotID Sensors %) (m'm?)  (mhd) Ock  RedOck  Ock Ok  Mgle Mode  Pine Pine
GR10150200 AVIRIS 22 2.8 358 152% 3.3% 446% 27.2% 1%
GRIDSOIO0  AVIRIS 2.20 321 31.6 10.1%  1.3%  63% 51% 1.3% 20.3%
GRID50300  AVIRIS 2.40 335 304 11.8% 39% 303% 53% 21.1%
GR1150200 Beih 229 1.80 21.2 38%  57%  224% 7.5% 1.9%
GRIS0W00  Boih® 2.48 38 2.6 27% 135% 365% 162% 1.4%
GR150300  Boih 255 2.61 28.4 A2% 1B3%  239% 183% 4.7%
GRI7150200 AMIRIS 227 2,83 28.4 6% 1% 113% 56%  56%  11.3% 1.4%
GR17200350 AVIRIS 2.46 329 23.2 259% 6F% 224%  52% 15.5%
GR1720050 AVIRIS 2.54 3.21 204 9.8% 19.6%  20%  20%  31.4%
GR5150200 Boih* 2.23 3.89 26.4 NEE 0% 227%  76%  16T% 15%  3.0%
GR5200350 Boh® 2.44 3.25 19.2 125%  125%  42% 4%  292% 2.1% 83%
GR520050  Boiy 2.36 3.62 20.8 269%  9.6% 17.3%  58%  38% 11.5%
GRBI00250 Boh 2.60 3.60 3.2 69.2%  128% 24%  11.5% 1.3%
GRES0100  Boh 2.73 3.83 31.2 423%  11.5% 26% 205%  51%
GRB50400  Boh 2.72 332 34.4 B02%  9.3% 1.2%
GYPI Hyperion  2.38 247 259 00% 0.2% 534% 01%  30% 225%  160%
GYP10 Hyperion 235 2.24 127 N7%  00%  361% 02% 362%  1.2%
GYPI 8ath 273 2.04 338 107%  328%  539% 0.0%
GYP12 Hyperlon 259 2,33 25.1 1.2%  211%  627% 40%
GYP2 Hyperlon 245 2,56 349 59% 77.9% 145% 03%
GYP3 Bain 238 2.01 22.4 B58% 00% 02%  67%
GYP4 Hyperon  2.27 2.32 24,7 34.4% 124%  17.6% 1.2%
GYPS Hyperion  2.62 1.95 340 48.6% 300% 11.7% 0.2%
GYPS Both 307 2.78 225 27% 142% 659% 20% 79%  00%
GYP7 Both 263 1.92 337 307%  475% 1L1%  2.5%
GYPa AVIRIS 269 2,61 33.0 209%  61.2% A%
GYpY Both 2.63 250 24.6 242% 735% 02% 0.2%

* Only us ed with Hyperion, exhibited doud o shadow contamination on AVIRIS.

identifying foliar nutrient concentration through imaging spec-
troscopy. Specifically, the first-derivative identifies differences
in the slope of the spectra, meaning that absorbance features
related to canopy chemistry are identified through relative
differences in the linear rate of change of reflectance within a
given wavelength region. As a consequence, the actual bands
identified as being related to N concentration may not in fact be
centered on wavelengths known to exhibit absorbance features
but rather those just adjacent to known absorbance features. We
did not employ second-derivative spectra, although these have
been suggested in the literature (see [30, Table IV]).

We employed partial least squares regression (PLS) to esti-
mate canopy N concentration as a function of image measure-
ment methods reported by several authors [6], [8], [31]. The
benefit to using PLS for imaging spectroscopy applications is
that it takes advantage of the high dimensionality of the spectral
data by building predictive models through the extraction of fac-
tors {also called components or latent vectors) from the original
data which best explain both the response and predictor varia-
tion [32]. In contrast, stepwise variable selection with ordinary
least squares (OLS) regression is less preferred because of the
potential for selecting wavelengths not associated with known
absorption features (i.e., spurious correlations) [33]. PLS allows
the use of either all spectral data or a selection of spectral wave-
lengths that have been reported to be related to N-absorption
features.

For our implementation of PLS, we used first-derivative
reflectance data from +I5 nm of the wavelength regions

reported to be associated with known N absorbance features,
as identified in a review of the literature. Curran ef al. [5]
noted key absorption bands associated with nitrogen bonds at
1020, 1510, 2060, 2130, 2180, and 2300 nm. Other sources
also indicate the presence of absorption bands associated with
nitrogen, proteins or amino acids at or near 1180-1200 nm,
1460 nm [20], 910 and 2350 nm [5]). Noise levels in the
Hyperion images were considered too high to use wavelengths
above 2300 nm. Some of the wavelengths noted in the literature
(910 and 1180-1200 nm) have been identified as absorption
features for proteins, though not specifically for nitrogen.
However, because proteins are defined by the presence of an
amino group (=NHs), we included these wavelengths in the
analysis. These bands were also used because many other
wavelengths associated with N absorption features are located
in regions of the electromagnetic spectrum (EMS) that are
characterized by strong atmospheric water absorption features,
rendering those wavelengths unusable in a remote sensing
analysis, Finally, we chose to use one set of wavelengths from
the visible-near infrared portion of the EMS. Although there
are no absorption features directly associated with nitrogen
in chemical bonds at the shorter wavelengths, wavelengths
below 800 nm are strongly associated with other vegetation
characteristics, especially vegetation greenness (as evidenced
by chlorophyll concentrations and the differences in reflectance
at NIR and red wavelengths), However, vegetation greenness
represents a surrogate indicator of N levels (i.e., greener, more
vigorous vegetation will have greater concentrations of N).
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TABLE 11
FOLIAR NITROGEN CONCENTRATION OF SPECIES SAMPLED IN THE STUDY

Trees MnN MxN MecnN SidDev

S dentific name Cormrmon name sarvped (%) %) (%) N (%)
Acer pers yivanioum Striped mcde 1 272 272 272

Ager rubrumn Redmcple 34 1.8 3.23 239 039
Acer saocharum Suga mcple 9 1.99 284 247 0.29
Amelanciier arborear Sendoeberry 2 1.81 2.10 1.94 0.21
Betualenta Bladk Lirch 4 2.85 3.47 an 0.28
Cayadba Mockernut hickary 1 227 227 227
Cayaglaro Pigrwt hickory 6 210 4.24 255 084
Cayaovaia S haghark hickory 2 2.80 2.88 2.84 0.06
Canus florict Flowering dogwood 1 241 241 2.41

Fagus grendifdlia Beech 2 295 299 297 0.03
Frawinus amerfoana White csh 2 229 2.30 2,30 oo
Hamamealis virgnlana Witdhczel 3 228 2N 246 0.22
Kamialofifola Mountdn lcerel 2 1.53 1.66 1.59 0.0%
Linderabarzan Spicetush 1 407 4.07 4.07
Lirfodendton iulipifera T ulip popier ] 4,12 412 4,12
Nyssasyivalioo Black gum 3 252 27 2.60 0.10
Cs ryavirgniana Hop-horrbeem 1 223 2.23 223

Prunws serofing Pin cherry 1 370 3.70 .70

Sueras abo White ock 38 1.67 3.38 2.49 0.41
Sueras coadneg Sacrlet ook K| 1.91 230 209 0.20
Sueras orinus Ches tnut odc 54 1.78 3.53 272 0.33
Sueras rutro Red ock 54 2.0 3.85 287 0.35
Eueras velufing Black ook 9 .43 2.76 245 0.40
Rhodbdiandron maximum Rhododendron 1 1.23 1.23 1.23
Tiiacmeriaona Bas s wood 2 3.82 403 392 0.15
Veonium s Blueberry 5 197 235 221 0.5

Therefore, we employed spectra at 450-500 nm because this
region of the EMS is strongly influenced by the presence
and abundance of chlorophyll a and & (chlorophyll being a
large molecule composed of hydrogen, carbon, and oxygen
around four central nitrogen atoms and a magnesium atom).
In addition, wavelengths in the 450-500-nm range were also
used because they did not exhibit correlations with basal area
or leaf area index, as did bands in the 600-700-nm range or
those straddling the red edge (between 700-750 nm) [15].
First-derivative reflectance from a total of 46 wavelengths of
Hyperion and 52 wavelengths of AVIRIS were used in the PLS
procedure to extract the factors used to predict canopy N.

The first-derivative reflectance spectra were then input into
the PLS procedure in SAS (version 8.2), with the AVIRIS and
Hyperion data analyzed separately. Using PLS, one can generate
as many factors as dependent variables, thus overfitting the data.
We used one-at-a-time cross-validation (dropping each obser-
vation and successively recomputing the predictive model) to
select the model with the minimum predicted residual sum of
squares statistic (PRESS) as having optimum number of factors
for the predictive model. Statistical model comparison using
randomization [34] was employed to identify the PLS model
with the fewest number of factors that was not significantly dif-
ferent from the “best” model at a p-value of 0.10. Following this,
we randomized the canopy N data 20 times and reimplemented
the PLS procedure to ensure that the PLS predictions were not
the result of spurious relationships, afier Grossman et al. [33].
Finally, PLS models were also developed independently using
each of leaf area index (LAI), species composition (percentage

TABLE NI
PERCENT VARIATION ACCOUNTED FOR BY PARTIAL LEAST
SQUARES FACTORS FOR HYPERION MODEL

Number of Model Effects | Dependent Variables
Extracted Factors| Current  Total | Curremt Total
1 15.7 15.7 58.7 58.7
2 9.0 247 315 90.2
3 7.4 2.1 6.5 96.8
4 8.3 404 1.1 57.9

plot basal area of each dominant species), and absolute basal
area instead of canopy N as dependent variables to demonstrate
that associations with the sclected image spectra were unique to
N concentration.

III. RESULTS

For Hyperion, the best PLS model extracted five factors from
the spectral data to predict canopy N concentration. However,
the model with four factors was not significantly different from
the five-factor model and was selected for mapping. The four-
factor model accounted for 97.9% of the variation in the N data
and 40.4% of the variation in the spectral data (Table III), in-
dicating good prediction of canopy N [Fig. 2(a)] but also that
the remaining variation in the spectral data was likely duc to
factors other than N concentration. For AVIRIS, a three-factor
model was identified as having both the minimum number of
factors and the lowest PRESS statistic (Table IV), accounting
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Fig. 2. Image-based predictions of canopy nitrogen concentration versus
folinge-based estimates for (A) Hyperion and (B) AVIRIS.

TABLE IV
PERCENT VARIATION ACCOUNTED FOR BY PARTIAL LEAST
SQUARES FACTORS FOR AVIRIS MODEL

Number of Model Effects | Dependent Variables
Extracted Factors | Cument  Total | Current Total
1 500 500 29.7 29.7
2 6.8 56.7 511 80.8
3 15.6 724 4.1 84.9

for 84.9% of the variation in N [Fig. 2(b)] and 72.4% of the vari-
ation in the speciral data. None of the implementations of PLS
using randomized N data and correct reflectance data yielded
models with any number of factors that were significantly dif-
ferent from the null model. This indicated that it was unlikely
that the factors and models identified from the PLS analyses of
the correct dataset were the result of spurious relationships.

Maps of canopy N concentration derived from PLS (Fig. 3)
exhibit similar patterns in the Hyperion and AVIRIS predictions
(area of overlap is noted). Hyperion and AVIRIS predictions of
canopy N concentration were within 0.25%N for > 70% of the
overlap area, with an additional 25% of the overlap area pre-
dicted within 0.25% to 0.5%N of each other. Predictions for the
field plots in the overlap area also matched closely (Fig. 4). All
of the predictions were within 0.25%N of the leaf-based esti-
mates, which is not surprising due to the high degree of expla-
nation from the PLS model,

No statistically significant models could be developed using
PLS to predict LAL basal area, or composition as a function of
the selected wavebands. This indicated that the relationships
between N concentration and the first-derivative wavebands that
we used were due to variations in canopy N (or a related factor),
but not LAI, composition or basal arca. Simple correlation
analyses also indicated that of the first-derivative wavebands
that cormrelated strongest with canopy N concentration (499,
1175, and 1508 nm for Hyperion and 1513, 1642, and 2349
nm for AVIRIS), only 1508 nm (Hyperion) and 1642 nm
{AVIRIS) correlated significantly with LAI (but less so than
N with the same bands), and none correlated significantly
with composition variables or basal area. In fact, few of the
wavebands used in the PLS analyses correlated significantly
with LAI, basal area or composition, but many correlated with
canopy N concentration.
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Fig. 3. Maps of predicted canopy nitrogen concentration using Hyperion (A)
and AVIRIS (B). Inset area on A indicales area of overlap between Hyperion
and AVIRIS. Clouds and nonforest areas are masked out for each date.
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Fig. 4. Comparison of image-derived predictions of canopy nitrogen
concentration for Hyperion and AVIRIS for plots in the area of overlap in
Fig. 3.

IV. DIscussION

The analyses indicate that partial least squares regression can
be used with both Hyperion and AVIRIS to develop predic-
tions of canopy nitrogen concentration. The data range for the
maps generated by the predictive models fit the expected data
range for the study area (1.8% to 3.2%) with very few pre-
dictions outside this data range. Although the model fit was
better for Hyperion than AVIRIS, this was accomplished using
a larger number of factors (four rather than three). In addition,
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maps of the AVIRIS predictions were less speckled than Hy-
perion, which may be due to higher signal o noise ratio in the
AVIRIS data [35]. Indeed, Smith and Curran [36] indicated that
early 90’s AVIRIS data (with SNR comparable to Hyperion)
was merely adequate for estimating foliar biochemical concen-
trations, while the high SNR AVIRIS data from after 1995 was
more than adequate. Thus, the PLS factors accounted for more
variation in the predictor (spectral) data from AVIRIS than Hy-
perion (72.4% for AVIRIS to 40.4% for Hyperion), suggesting
a more direct relationship between spectra and canopy N in the
AVIRIS spectra. This is also an indication of noisiness in the
Hyperion data, i.e., much of the variation in the selected wave-
lengths was due to factors other than N absorption in canopy fo-
liage. Nevertheless, the results indicate that hyperspeciral data
from both sensors can be used to estimate the spatial distribution
of canopy nitrogen. From an operational perspective, both Hy-
perion and AVIRIS are suitable to generate predictions within
0.25%N of ground estimates, readily meeting the criteria sug-
gested by Schimel [37] for the accuracy of spatial estimates of
N concentration to be used for modeling broad scale impacts
of increases in greenhouse gas concentrations, N deposition or
other environmental changes. However, because of the nature of
the empirical approach and differences between Hyperion and
AVIRIS, the results for one sensor are not applicable the other,
nor are the results necessarily applicable to other images col-
lected using the same sensor.

The selection of statistical techniques has important im-
plications for the results of any empirical modeling exercise.
With PLS regression, one must select the independent vari-
ables, but the nature of the method is that it can employ high
dimensional predictor data by extracting a small number of
factors that account for the correlation/variation in the pre-
dictors. Nevertheless, one must still decide whether to use all
wavelengths or a subset of wavelengths, and whether to usc
the raw reflectance spectra or derivative reflectance spectra,
We limited our analyses to first-derivative reflectance spectra
of wavelengths that had been demonstrated in the literature to
be related directly to N absorption features (through chemical
bonds) or to chlorophyll @ and b which act as additional
surrogates for N concentration. This limited the possibility of
spurious relationships and also provided a defensible argument
for the use of the wavelengths that were selected. By using
first-derivative reflectance spectra, the analyses focused on the
slope of reflectance spectra, in theory identifying differences
related to the magnitude of N-related absorption features.
The use of first-derivative spectra also lessened the effects
of topographically induced shading, which influences overall
reflectance [38] but not the shape of the derived spectral
reflectance curve.

Aspects of data processing and analysis may have affected
the results. First, the estimates of canopy nitrogen concentra-
tion were based on extrapolations from a small number of leaf
samples. As with any such study, there was the possibility of
measurement error on the ground, as well as errors in com-
positing the leaf N measurements for a plot based on species
abundance. Associated with this was the possibility that varia-
tions in canopy closure, LAl and the spectral mixture of leaves,
branches, shade and ground in an image pixel may have con-
founded predictions generated using the imagery. The forests
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in the study area are generally mature, even-aged, and have a
mostly closed canopy, but variations in reflectance due to fac-
tors other than N concentration were certainly present [39). Nev-
ertheless, we conclude that canopy foliar N was the primary
source of variation in the selected wavebands, especially be-
cause those bands did not correlate significantly with LAI, basal
area or species composition. Finally, image processing proce-
dures can affect the derived spectra used in the analyses. For
example, ATREM was designed for use with whiskbroom sen-
sors; as such, the atmospherically corrected reflectances used
for the Hyperion analysis have not adequately accounted for
“smile” in the pushbroom Hyperion sensor [27], [35], [40] so
that there is the increased potential for error in the calibrated Hy-
petion reflectances compared to the AVIRIS reflectances. How-
ever, we expect this to be a minor source of error in the statis-
tical analyses compared to possible estimation/measurement er-
rors or spectral variations due to the structural complexity of the
forest canopies.

V. CONCLUSION

Partial least squares analyses of canopy N concentration with
AVIRIS and Hyperion imagery yielded statistically significant
predictive models that produced very similar maps of canopy
N for the two sensors. Because the predictions of N concentra-
tion in the two maps are mostly within 0.25%, we believe that
the resuits from both sensors are relatively robust and that the
approach is generally applicable where appropriate canopy N
data are available. Although a generalized analytical method-
ology may be possible for estimating N concentration using
imaging spectroscopy, it is unlikely that anything other than
localized empirical methods will yield reasonable results duc
to fundamental differences among sensors and because spec-
tral variations due to canopy structure and species composition
between study areas may be substantial. Nevertheless, this re-
search demonstrates the practical utility of EO-1 Hyperion, the
first orbital imaging spectrometer. In addition, the potential in
the future for widely available hyperspectral imagery will mean
that scientists and managers will be able to make spatial esti-
mates of a variable critical to understanding the functioning of
ecosystems. Further analyses should be conducted to determine
the intercomparability of models developed for multiple study
areas and using multiple sensors,
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