Living Shorelines

Using an Integrated Planting Approach

Presented by Chris Miller
Plant Materials Specialist
USDA-NRCS
Cape May Plant Materials Center

Properly evaluating site conditions

- * Adequate sand supply?
- * Shoreline orientation/shape?
- * Fetch distance/wave height?
- * boat wake?
- * naturally occurring vegetation?
- * salinity concentration?
- * adjacent structural measures?

SHORELINE STABILIZATION

Vegetative Treatment Potential

- Fetch
- Shape
- Orientation
- Boat Traffic
 - Width
 - Slope
 - Vegetation
 - Soil Conditions

Vegetated Treatment Potential

FETCH	< 0.5 mi 8	0.5 - 1.4 7	1.5 - 3.4 4	3.5 - 4.9 2	> 5.0 0	
SHAPE	Coves 8	Irregular Shoreline 3		Headland or straight 0		
ORIENT	0.5 mi fetch 5	W to N 3	S to W	S to E	N to E 0	
BOAT TRAFFIC	None 5	1 – 10 per wk @ .5 mi 3	10 0.5 mi 2	1 - 10 100 yds 1	> 10 100 yds 0	
					TOTAL	

Total		VTP
23	26	Excellent
20	22	Very Good
16	19	Good
13	15	Fair
0	13	Poor

VTP, cont'd

				Subtotal	
BEACH WIDTH	> 10 ft 3	7 - 10 2	3 - 6 1	< 3 0	
PLANT WIDTH	> 20 ft 3	15 - 20 2	14 - 10 1	< 10 ft NG	
BEACH SLOPE	< 8 % 6	8 - 14 3	15 - 20 1	> 20 % 0	
BEACH VEG	Veg below		No veg below toe 0		
SAND DEPTH	> 10 in 3	3 -		< 3 in 0	
				TOTAL	

Тс	otal	VTP
33	40	Good
24	32	Fair
16	23	Poor
0	16	Do not plant

Site Constraints *3-4 mile fetch *N to E orientation *Straight shoreline *heavy boat traffic *lack of littoral sand

Planting Guidelines

Plant in as dry a condition as possible

Plant low marsh with Spartina alterniflora on two-three foot centers

Plant from mean tide to mean high tide.

Use Osmocote slow release fertilizer 18-6-12

Acclimate plants to site salinity

Set up monitoring before planting

Misuse of erosion control products. Not designed to function as a wave break.

Not all coir fiber logs are created equal. Once netting is damaged, the log is compromised.

Chesapeake Bay Bluffs

Factors affecting bluff stabilization

- Surface Water creates rill/gully erosion
- Ground Water creates slumping and slope instability
- Bay Water wave energy creates toe erosion

Traditional Approach

 Not the best approach for long term sustainability of the site.

Integrated Approach

 The integrated approach incorporates soil bioengineering techniques using a combination of woody and herbaceous plant materials in various forms

Coastal Bluff Stabilization Full sun/Drought tolerant Species

- Bayberry (Morella pensylvanica)
- Dwarf sumac (*Rhus copallina*)
- Sand cherry (*Prunus* depressa)
- Sweetfern (Comptonia peregrina)
- Indigobush (Amorpha fruticosa)
- Groundsel (Baccharis halimifolia)

- American beachgrass (Ammophila breveligulata)
- Coastal panicgrass (Panicum amarulum)
- Switchgrass (Panicum virgatum)
- Saltmeadow cordgrass (Spartina patens)
- Coastal little bluestem (Schizachyrium scoparium var. littorale)

Bluff Treatment

'Cape' american beachgrass (Ammophila breviligulata)

Native Warm Season Grasses

- Switchgrass plug root development within 3 months.
- Tolerate periods of drought well.
- Deep root system allows for soil/bank reinforcement

Switchgrass (Panicum virgatum)

- Natural Habitat: Dry to wet, sterile and acid, sandy soil. Upper edges of salt marshes and stream banks.
- Description: A moderately tall (3-6 ft.) perennial, warm season bunchgrass which produces a large amount of leaf biomass. A distinguishing characteristic is the fine fringe of hairs present in the leaf axils. The large, spreading inflorescence casts a purple tinge when flowering. Flowers and seed are borne singly at the ends of the flowering branches. This plant is a prolific seed producer. These smooth, shiny seeds mature from September-October.
- Uses: erosion control, forage, wildlife, ornamental

Freshwater Cordgrass (Spartina pectinata)

Cape May Plant Center

-Long Island population

Giant Cordgrass (Spartina cynosuroides)

Chesapeake Bay population

BEACH PLUM: This long-lived native species thrives in environments with salt, apparent drought and frequent disturbances, where their neighbors are often short lived.

Soil Bioengineering Species Limited rooting ability

- Buttonbush (Cephalanthus occidentalis)
- Elderberry (Sambucus canadensis)*
- Ninebark (Physocarpus opulifolia)*
- Arrowwood, Blackhaw (Viburnum spp.)*
- Groundsel (Baccharis halimifolia)
- Indigobush (Amorpha fruticosa)
- * indicates shade tolerance

Indigobush (*Amorpha fruticosa*)

Soil Bioengineering Species Bare root/Containerized

- Alder species (Alnus spp.)*
- Red/Black chokeberry (Aronia spp.)*
- Gray dogwood (Cornus racemosa)*
- Sweet pepperbush (Clethra alnifolia)*
- Winterberry holly (*Ilex verticillata*)*
- Spicebush (Lindera benzoin)*
- Witch-hazel (Hamamelis virginiana)*
- Highbush blueberry (Vaccinium corymbosum)*
- Bayberry (Morella pensylvanica)
- Dwarf sumac (Rhus copallina)
- Sweetfern (Comptonia peregina)

Dwarf Sumac (Rhus copallina)

Sweetfern (Comptonia peregrina)

Soil Bioengineering

- Soil Bioengineering: The practice of utilizing plant materials alone in such a way as to perform a structural function of stabilization
- <u>Biotechnical Stabilization</u>: Utilizing a combination of plants, geotextile fabrics, and/or structural measures for stabilization.

Vegetative Considerations

Planting Techniques

- Seeding vs vegetative material
- Plant types
 - Dormant unrooted
 - Bare root
 - Containerized

Native or naturalized materials?

- Caution with invasive plants
 - Polygonum
 - Crownvetch

Woody Plant Functions Soil Bioengineering Systems

- Root reinforcement root tensile strength mechanically reinforces soil.
- Soil moisture depletion remove excess soil water through evapotranspiration.
- Buttressing and Arching anchored & embedded stems/roots counteract downslope shear forces.
- Flexible stems deflect erosive energy

Soil Bioengineering Systems "Keystone Species"

Species

Rooting Success

Shrub willows (Salix spp.)

70%-100%

Shrub dogwoods (Cornus spp.)

30%-70%

Willow Whips

- 3/8" to 5/8" in diameter
- 4-8 ft. in length
- Cut when dormant
- Nursery grown; same diameter/branching pattern

Pussy Willow

Silky willow

Prairie Willow

'Ruby' redosier dogwood (Cornus serecia)

Developed because of it's prolific layering ability.

Soil Bioengineering

- Utilizes vegetation to provide some structural support to the slope.
- Examples
 - Fascines
 - Brushmattressing
 - Live Staking

A "living" live stake

Brushmattress Installation

Installation of brushmattress

After one growing season

Other Plant Forms

- Unrooted cuttings
- Bare Root
- Tubelings
- Container

Unrooted Cuttings

- 1/4"-3/8" diameter
- 8"-12" length
- Perform better in moist soils
- May be planted through erosion control fabric

Rooted (bare root) plants

- field dug, bare root
- 3/8" at root collar
- Root gel (Terrasorb)
 increases survival in
 higher, drier bank zones
- May be planted though erosion control fabric

Tubelings

Containerized Plants

Plant Materials Costs

Plant Fo	orm
----------	-----

Unrooted cuttings

Live stakes (1-3 ft.)

Willow whips (4'-8')

Tubelings

Bare root (1-0)

Container (1 gal)

Approximate Cost

\$0.45-\$0.75

\$1.00-\$1.50

\$1.00-\$3.00

\$1.25-\$1.75

\$1.00-\$2.00

\$ 3.00-\$12.00

Planting Trial Red Point-Cecil County

Red Point-Cecil County

Dormant Shrub Willow Planting

Herbaceous Plantings of beachgrass/saltmeadow cordgrass

General Bluff Planting Alternatives

- Establish good herbaceous cover then incorporate containerized, bare root, or dormant unrooted shrubs, but no trees
- Plant a few scattered "mother" plants of well adapted shrub species and allow for natural succession due to seed dispersal
- Use the "Vegetative Barriers" approach to slope protection. Plant beachgrass, saltmeadow cordgrass, and/or coastal panicgrass on a tight (6"-8") spacing within a row. Plant 2-3 rows one foot apart
- Soil bioengineering techniques may be used where water may be piping out of the slope.

Is Time Running Out?

